442 resultados para Astronomia nàutica
Resumo:
The great majority of analytical models for extragalactic radio sources suppose self-similarity and can be classified into three types: I, II and III. We have developed a model that represents a generalization of most models found in the literature and showed that these three types are particular cases. The model assumes that the area of the head of the jet varies with the jet size according to a power law and the jet luminosity is a function of time. As it is usually done, the basic hypothesis is that there is an equilibrium between the pressure exerted both by the head of the jet and the cocoon walls and the ram pressure of the ambient medium. The equilibrium equations and energy conservation equation allow us to express the size and width of the source and the pressure in the cocoon as a power law and find the respective exponents. All these assumptions can be used to calculate the evolution of the source size, width and radio luminosity. This can then be compared with the observed width-size relation for radio lobes and the power-size (P-D) diagram of both compact (GPS and CSS) and extended sources from the 3CR catalogue. In this work we introduce two important improvement as compared with a previous work: (1)We have put together a larger sample of both compact and extended radio sources
Resumo:
Important advances have been made along the last decade in the study of the lithium behavior in solar-type stars. Among the most important discoveries what attracts attention is that the distribution of lithium abundance in the late F-type giant stars tends to be discontinuous, at the same time of a sudden decline in rotation and a gradual decline according to the temperature for giant red stars of such spectral type. Other studies have also shown that synchronized binary systems with evolved components seem to keep more of their original lithium than the unsynchronized systems. evertheless, the connection between rotation and lithium abundance as well as the role of tidal effects on lithium dilution seem to be more complicated matters, depending on mass, metallicity and age. This work brings an unprecedented study about the behavior of lithium abundance in solartype evolved stars based on an unique sample of 1067 subgiant, giant and supergiant stars, 236 of them presenting spectroscopic binary characteristics, with precise lithium abundance and projected rotational speed. Now the lithium-rotation connection for single and binary evolved stars is analyzed taking into account the role of mass and stellar age
Resumo:
Recent astronomical observations (involving supernovae type Ia, cosmic background radiation anisotropy and galaxy clusters probes) have provided strong evidence that the observed universe is described by an accelerating, flat model whose space-time properties can be represented by the FriedmannRobertsonWalker (FRW) metric. However, the nature of the substance or mechanism behind the current cosmic acceleration remains unknown and its determination constitutes a challenging problem for modern cosmology. In the general relativistic description, an accelerat ing regime is usually obtained by assuming the existence of an exotic energy component endowed with negative pressure, called dark energy, which is usually represented by a cosmological constant ¤ associated to the vacuum energy density. All observational data available so far are in good agreement with the concordance cosmic ¤CDM model. Nevertheless, such models are plagued with several problems thereby inspiring many authors to propose alternative candidates in the relativistic context. In this thesis, a new kind of accelerating flat model with no dark energy and fully dominated by cold dark matter (CDM) is proposed. The number of CDM particles is not conserved and the present accelerating stage is a consequence of the negative pressure describing the irreversible process of gravitational particle creation. In order to have a transition from a decelerating to an accelerating regime at low redshifts, the matter creation rate proposed here depends on 2 parameters (y and ߯): the first one identifies a constant term of the order of H0 and the second one describes a time variation proportional to he Hubble parameter H(t). In this scenario, H0 does not need to be small in order to solve the age problem and the transition happens even if there is no matter creation during the radiation and part of the matter dominated phase (when the ß term is negligible). Like in flat ACDM scenarios, the dimming of distant type Ia supernovae can be fitted with just one free parameter, and the coincidence problem plaguing the models driven by the cosmological constant. ACDM is absent. The limits endowed with with the existence of the quasar APM 08279+5255, located at z = 3:91 and with an estimated ages between 2 and 3 Gyr are also investigated. In the simplest case (ß = 0), the model is compatible with the existence of the quasar for y > 0:56 whether the age of the quasar is 2.0 Gyr. For 3 Gyr the limit derived is y > 0:72. New limits for the formation redshift of the quasar are also established
Resumo:
The interest in the systematic analysis of astronomical time series data, as well as development in astronomical instrumentation and automation over the past two decades has given rise to several questions of how to analyze and synthesize the growing amount of data. These data have led to many discoveries in the areas of modern astronomy asteroseismology, exoplanets and stellar evolution. However, treatment methods and data analysis have failed to follow the development of the instruments themselves, although much effort has been done. In present thesis, we propose new methods of data analysis and two catalogs of the variable stars that allowed the study of rotational modulation and stellar variability. Were analyzed the photometric databases fromtwo distinctmissions: CoRoT (Convection Rotation and planetary Transits) and WFCAM (Wide Field Camera). Furthermore the present work describes several methods for the analysis of photometric data besides propose and refine selection techniques of data using indices of variability. Preliminary results show that variability indices have an efficiency greater than the indices most often used in the literature. An efficient selection of variable stars is essential to improve the efficiency of all subsequent steps. Fromthese analyses were obtained two catalogs; first, fromtheWFCAMdatabase we achieve a catalog with 319 variable stars observed in the photometric bands Y ZJHK. These stars show periods ranging between ∼ 0, 2 to ∼ 560 days whose the variability signatures present RR-Lyrae, Cepheids , LPVs, cataclysmic variables, among many others. Second, from the CoRoT database we selected 4, 206 stars with typical signatures of rotationalmodulation, using a supervised process. These stars show periods ranging between ∼ 0, 33 to ∼ 92 days, amplitude variability between ∼ 0, 001 to ∼ 0, 5 mag, color index (J - H) between ∼ 0, 0 to ∼ 1, 4 mag and spectral type CoRoT FGKM. The WFCAM variable stars catalog is being used to compose a database of light curves to be used as template in an automatic classifier for variable stars observed by the project VVV (Visible and Infrared Survey Telescope for Astronomy) moreover it are a fundamental start point to study different scientific cases. For example, a set of 12 young stars who are in a star formation region and the study of RR Lyrae-whose properties are not well established in the infrared. Based on CoRoT results we were able to show, for the first time, the rotational modulation evolution for an wide homogeneous sample of field stars. The results are inagreement with those expected by the stellar evolution theory. Furthermore, we identified 4 solar-type stars ( with color indices, spectral type, luminosity class and rotation period close to the Sun) besides 400 M-giant stars that we have a special interest to forthcoming studies. From the solar-type stars we can describe the future and past of the Sun while properties of M-stars are not well known. Our results allow concluded that there is a high dependence of the color-period diagram with the reddening in which increase the uncertainties of the age-period realized by previous works using CoRoT data. This thesis provides a large data-set for different scientific works, such as; magnetic activity, cataclysmic variables, brown dwarfs, RR-Lyrae, solar analogous, giant stars, among others. For instance, these data will allow us to study the relationship of magnetic activitywith stellar evolution. Besides these aspects, this thesis presents an improved classification for a significant number of stars in the CoRoT database and introduces a new set of tools that can be used to improve the entire process of the photometric databases analysis
Resumo:
The recent observational advances of Astronomy and a more consistent theoretical framework turned Cosmology in one of the most exciting frontiers of contemporary science. In this thesis, homogeneous and inhomogeneous Universe models containing dark matter and different kinds of dark energy are confronted with recent observational data. Initially, we analyze constraints from the existence of old high redshift objects, Supernovas type Ia and the gas mass fraction of galaxy clusters for 2 distinct classes of homogeneous and isotropic models: decaying vacuum and X(z)CDM cosmologies. By considering the quasar APM 08279+5255 at z = 3.91 with age between 2-3 Gyr, we obtain 0,2 < OM < 0,4 while for the j3 parameter which quantifies the contribution of A( t) is restricted to the intervalO, 07 < j3 < 0,32 thereby implying that the minimal age of the Universe amounts to 13.4 Gyr. A lower limit to the quasar formation redshift (zJ > 5,11) was also obtained. Our analyzes including flat, closed and hyperbolic models show that there is no an age crisis for this kind of decaying A( t) scenario. Tests from SN e Ia and gas mass fraction data were realized for flat X(z)CDM models. For an equation of state, úJ(z) = úJo + úJIZ, the best fit is úJo = -1,25, úJl = 1,3 and OM = 0,26, whereas for models with úJ(z) = úJo+úJlz/(l+z), we obtainúJo = -1,4, úJl = 2,57 and OM = 0,26. In another line of development, we have discussed the influence of the observed inhomogeneities by considering the Zeldovich-Kantowski-DyerRoeder (ZKDR) angular diameter distance. By applying the statistical X2 method to a sample of angular diameter for compact radio sources, the best fit to the cosmological parameters for XCDM models are OM = O, 26,úJ = -1,03 and a = 0,9, where úJ and a are the equation of state and the smoothness parameters, respectively. Such results are compatible with a phantom energy component (úJ < -1). The possible bidimensional spaces associated to the plane (a , OM) were restricted by using data from SNe Ia and gas mass fraction of galaxy clusters. For Supernovas the parameters are restricted to the interval 0,32 < OM < 0,5(20") and 0,32 < a < 1,0(20"), while to the gas mass fraction we find 0,18 < OM < 0,32(20") with alI alIowed values of a. For a joint analysis involving Supernovas and gas mass fraction data we obtained 0,18 < OM < 0,38(20"). In general grounds, the present study suggests that the influence of the cosmological inhomogeneities in the matter distribution need to be considered with more detail in the analyses of the observational tests. Further, the analytical treatment based on the ZKDR distance may give non-negligible corrections to the so-calIed background tests of FRW type cosmologies
Sobre a relação entre rotação, atividade crosmosférica e abundância de lítio em estrelas subgigantes
Resumo:
The connection between rotation, CaII emission flux and lithium abundance is analyzed for a sample of subgiant stars, with evolutionary status was determined from the Toulouse-Geneve code and HlPPARCOS trigonometric parallax measurements. We noted that the distribution of rotation and CaII emission flux, as a function of effective temperature, shows a discontinuity located around the same spectral type, F8IV. Stars located blueward of this spectral type, exhibit a large spread of values of rotation and CaII flux, whereas stars redward of F8lV show essentially low ratation anel low CaII flux. The strength of these declines nevertheless, depends on stellar mass. The distribution of lithium abundances also shows a discontinuity, however with behavior a little more complex for subgiants with mass lower than about 1.2 Solar Masses, this decrease is observed later than that in rotation and CaII flux, whereas for masses higher than 1.2 Solar Masses the decrease in lithium abundance is located around the spectral type F8IV. The discrepancy between the location of the discontinuities of rotation and CaII flux and log n(Li) for stars with masses lower than 102 Solar Masses, seems to reflect the sensitivity of these phenomena to the mass of the convective envelope. The drop in rotation, which results mostly from a magnetic braking, requires an increase in the mass of the convective envelope less than that required for the decrease in lithium abundance The location of the discontinuity in log n( Li) in the same region of the discontinuity ties in rotation and CaII flux, for stars with masses higher than 1.2 Solar Masses, may also be explained by the behavior of the deepening of the convective envelope. In contrast to the relationship between rotation and CaII flux the relationship between lithium abundance and rotation shows no dear tendency toward linear behavior. Similarly, the same tendency is observed in the relationship between lithium abundance and CaII flux in spite of these facts, subgiants with high lithium content also have high rotation and high CaII emission flux. We also observed that stars with high lithium content present, in its majority, an undeveloped convective envelope, whereas stars with low lithium content have a developed convective envelope. In the case of the rotation, stars with undeveloped convective envelope, show rotational velocities as much high as low, whereas stars with developed convective envelope only present low rotation
Resumo:
Understanding the way in which large-scale structures, like galaxies, form remains one of the most challenging problems in cosmology today. The standard theory for the origin of these structures is that they grew by gravitational instability from small, perhaps quantum generated, °uctuations in the density of dark matter, baryons and photons over an uniform primordial Universe. After the recombination, the baryons began to fall into the pre-existing gravitational potential wells of the dark matter. In this dissertation a study is initially made of the primordial recombination era, the epoch of the formation of the neutral hydrogen atoms. Besides, we analyzed the evolution of the density contrast (of baryonic and dark matter), in clouds of dark matter with masses among 104M¯ ¡ 1010M¯. In particular, we take into account the several physical mechanisms that act in the baryonic component, during and after the recombination era. The analysis of the formation of these primordial objects was made in the context of three models of dark energy as background: Quintessence, ¤CDM(Cosmological Constant plus Cold Dark Matter) and Phantom. We show that the dark matter is the fundamental agent for the formation of the structures observed today. The dark energy has great importance at that epoch of its formation
Resumo:
A proposta deste trabalho é a construção artesanal de um telescópio refletor do tipo Newtoniano relacionando conteúdos abordados na disciplina de óptica, como a formação de imagens em lentes e espelhos, aberrações esféricas e cromáticas, interferência e difração, com cada fase do processo de construção. Com o aparelho construído é possível abordar a fotografia lunar e planetária com alta resolução e sua utilização por alunos do curso de Licenciatura em Física já demonstra ser um grande incentivo à contemplação do céu e à compreensão de muitos fenômenos físicos, com ocorrências de eclipses, formação das marés, estações do ano, etc, que geralmente são pouco abordados nas escolas de Ensino Fundamental e Médio. de acordo com diagnóstico realizado pelos alunos de graduação em algumas escolas do município de Bauru, verificou-se que a única abordagem de astronomia é apenas em relação ao sistema solar, especificamente órbitas planetárias, nas disciplinas de Física ou Geografia. Além do telescópio, a utilização de animações produzidas por alunos de graduação também pode ser considerada como uma ferramenta eficiente no ensino de astronomia, principalmente para alunos de Ensino Fundamental.
Resumo:
ROTATION is one the most important aspects to be observed in stellar astrophysics. Here we investigate that particularly in stars with planets. This physical parameter supplies information about the distribution of angular momentum in the planetary system, as well as its role on the control of dierent phenomena, including coronal and cromospherical emission and on the ones due of tidal effects. In spite of the continuous solid advances made on the study of the characteristics and properties of planet host stars, the main features of their rotational behavior is are not well established yet. In this context, the present work brings an unprecedented study about the rotation and angular momentum of planet-harbouring stars, as well as the correlation between rotation and stellar and planetary physical properties. Our analysis is based on a sample of 232 extrasolar planets, orbiting 196 stars of dierent luminosity classes and spectral types. In addition to the study of their rotational behavior, the behavior of the physical properties of stars and their orbiting planets was also analyzed, including stellar mass and metallicity, as well as the planetary orbital parameters. As main results we can underline that the rotation of stars with planets present two clear features: stars with Tef lower than about 6000 K have slower rotations, while among stars with Tef > 6000 K we and moderate and fast rotations, though there are a few exceptions. We also show that stars with planets follow mostly the Krafts law, namely < J > / v rot. In this same idea we show that the rotation versus age relation of stars with planets follows, at least qualitatively, the Skumanich and Pace & Pasquini laws. The relation rotation versus orbital period also points for a very interesting result, with planet-harbouring stars with shorter orbital periods present rather enhanced rotation
Resumo:
Satellites signals present disturbances (scintillations), due to presence of irregularities in the ionospheric plasma. In the present work, we dedicate to the study of the attenuation of these scintillations that is, an improvement in the signal, during the main magnetic storm phase during the period of October 2006 to February 2007. Using amplitude of scintillation 1.5GHz (L1) data of the net of satellites GPS, in the ionospheric station of Natal (5.84o S, 35.20o O, -20o dip) and geomagnetic indices, during the minimum solar cycle (referred to as cycle 23), demonstrating its anti-correlation between magnetic activity (Kp) and index of scintillation (
Resumo:
The projected rotational velocity together with lithium abundance and the onset of the dilution by the deepening in mass of the convective envelope provide a key tool to investigate the so far poorly understood processes at work in stellar interiors of solar-analog stars. To investigate the link between abundances, convection and rotational velocities in solar-analog G dwarf stars, we study a bona fide sample of 118 selected solar-analog G dwarf stars presenting measured lithium abundances, rotational velocities, and fundamental parameters together with computed evolutionary tracks (Toulouse-Geneva code) for a range of stellar masses around 1 M and metallicity consistent with the solar-analog range. The aim of this work is to build up an evolution of lithium and rotation as a function of stellar age, mass, effective temperature, and convection. We analyze the evolutionary status of the sample of 118 solar-analog G dwarf in the HR diagram based on Hipparcos data and using a grid of stellar models in the effective temperature and mass range of the solar-analog stars. We discuss the deepening (in mass) of the convective envelope and the influence on the Li abundances and projected rotational velocities. We determined the stellar mass and the mass of the convective envelope for a bona fide sample of 118 selected solar-analog G dwarf and checked the evolutionary link between the rotational velocity, lithium abundance, and the deepening of the convective envelope. Fast rotators (vsini 6 km s��1) are also stars with high Li content. Slow rotators present a wide range of values of log n(Li). Our results shed new light on the lithium and rotational behavior in G dwarf stars. We confirmed the presence of a large Li abundance spread among the solar-analog stars and concluded that the solar twins probably share a similar mixing history with the Sun
Resumo:
The so-called gravitomagnetic field arised as an old conjecture that currents of matter (no charges) would produce gravitational effects similar to those produced by electric currents in electromagnetism. Hans Thirring in 1918, using the weak field approximation to the Einsteins field equations, deduced that a slowly rotating massive shell drags the inertial frames in the direction of its rotation. In the same year, Joseph Lense applied to astronomy the calculations of Thirring. Later, that effect came to be known as the Lense- Thirring effect. Along with the de Sitter effect, those phenomena were recently tested by a gyroscope in orbit around the Earth, as proposed by George E. Pugh in 1959 and Leonard I. Schiff in 1960. In this dissertation, we study the gravitational effects associated with the rotation of massive bodies in the light of the Einsteins General Theory of Relativity. With that finality, we develop the weak field approximation to General Relativity and obtain the various associated gravitational effects: gravitomagnetic time-delay, de Sitter effect (geodesic precession) and the Lense-Thirring effect (drag of inertial frames). We discus the measures of the Lense-Thirring effect done by LAGEOS Satellite (Laser Geodynamics Satellite) and the Gravity Probe B - GPB - mission. The GPB satellite was launched into orbit around the Earth at an altitude of 642 km by NASA in 2004. Results presented in May 2011 clearly show the existence of the Lense-Thirring effect- a drag of inertial frames of 37:2 7:2 mas/year (mas = milliarcsec)- and de Sitter effect - a geodesic precession of 6; 601:8 18:3 mas/year- measured with an accuracy of 19 % and of 0.28 % respectively (1 mas = 4:84810��9 radian). These results are in a good agreement with the General Relativity predictions of 41 mas/year for the Lense-Thirring effect and 6,606.1 mas/year for the de Sitter effect.
Resumo:
This work focuses the geological and geomorphological characterization of the inner shelf in the West Coast of the Rio Grande do Norte state, particularly the reef coral barrier offshore of Maracajaú (Maxaranguape district). If developed without the necessary concerns, tourism and entertainment activities that have been widely increased during the last five years can lead to irreversible environmental damages to the biotic and abiotic ecosystems of the region. Regarding these aspects, it is crucial the realization of a detailed study to envisage the achievement of a self-sustainable development, especially with respect to the possibilities of a rational usage of the region. This is the aim of this manuscript, which consisted of an initial stage of digital modeling of the terrain with basis on digitalization and vectorization of the Nautical map number 803 (Naval Service of Brazil, 1971). Information obtained in this phase was improved with the digital processing of small format aerial photos acquired from six flights, which were integrated to form a photomosaic of the area. The refined maps produced with the data from Nautical and aerial photo-interpretations aided to locate 9 bathymetric profiles, which provided information about the sea floor relief of the whole area. This later aided in the choosing of areas to bottom sampling that, in its turn, helped to characterize sediments present in floor of the inner shelf. Sixty-four samples collected during this work were studied by granulometrical and chemical analysis; with the later one developed in order to measure carbonate and organic matter contents. Forty-two of these samples showed carbonate content higher than 80% and organic matter in the range of 0.58% to 24.06%. With respect to grain size, these samples are in the interval between fine- to mid-grained sands. Sands with grain sizes higher than this one are also composed by carbonate carapaces such as pale yellow to red rhodolites with ellipsoidal and spheroidal shapes. During determination of the submerse features, the small format aerial photos demonstrated to be a useful methodology to aid the delineation of the sea floor topography through shallow deep waters. The bathymetry, for its turn, revealed several features at the bottom of the platform, in which the most conspicuous are undulations and morphological details of the São Roque Channel. Examination of bottom, aside from sand, yielded the identification of bivalves, ostracods, fragments of bryozoans, spikes of sponges, spines of echinoderms, operculum of gastropods and foraminifers. From the above it is concluded that the multi-methodological approach developed in this study worked efficiently, permitting the geomorphological and environmental characterization of the inner shelf of the North Maracajaú