547 resultados para Astronautics.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive scheme has been developed for the prediction of radiation from engine exhaust and its incidence on an arbitrarily located sensor. Existing codes have been modified for the simulation of flows inside nozzles and jets. A novel view factor computation scheme has been applied for the determination of the radiosities of the discrete panels of a diffuse and gray nozzle surface. The narrowband model has been used to model the radiation from the gas inside the nozzle and the nonhomogeneous jet. The gas radiation from the nozzle inclusive of nozzle surface radiosities have been used as boundary conditions on the jet radiation. Geometric modeling techniques have been developed to identify and isolate nozzle surface panels and gas columns of the nozzle and jet to determine the radiation signals incident on the sensor. The scheme has been validated for intensity and heat flux predictions, and some useful results of practical importance have been generated to establish its viability for infrared signature analysis of jets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fuzzy logic system is developed for helicopter rotor system fault isolation. Inputs to the fuzzy logic system are measurement deviations of blade bending and torsion response and vibration from a "good" undamaged helicopter rotor. The rotor system measurements used are flap and lag bending tip deflections, elastic twist deflection at the tip, and three forces and three moments at the rotor hub. The fuzzy logic system uses rules developed from an aeroelastic model of the helicopter rotor with implanted faults to isolate the fault while accounting for uncertainty in the measurements. The faults modeled include moisture absorption, loss of trim mass, damaged lag damper, damaged pitch control system, misadjusted pitch link, and damaged flap. Tests with simulated data show that the fuzzy system isolates rotor system faults with an accuracy of about 90-100%. Furthermore, the fuzzy system is robust and gives excellent results, even when some measurements are not available. A rule-based expert system based on similar rules from the aeroelastic model performs much more poorly than the fuzzy system in the presence of high levels of uncertainty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is described for estimating the incremental angle and angular velocity of a spacecraft using integrated rate parameters with the help of a star sensor alone. The chief advantage of this method is that the measured stars need not be identified, whereas the identification of the stars is necessary in earlier methods. This proposed estimation can be carried out with all of the available measurements by a simple linear Kalman filter, albeit with a time-varying sensitivity matrix. The residuals of estimated angular velocity by the proposed spacecraft incremental-angle and angular velocity estimation method are as accurate as the earlier methods. This method also enables the spacecraft attitude to be reconstructed for mapping the stars into an imaginary unit sphere in the body reference frame, which will preserve the true angular separation of the stars. This will pave the way for identification of the stars using any angular separation or triangle matching techniques applied to even a narrow field of view sensor that is made to sweep the sky. A numerical simulation for inertial as well as Earth pointing spacecraft is carried out to establish the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were carried out investigating the features of mean and unsteady surface pressure fluctuations in boat-tail separated flows relevant to launch vehicle configurations at transonic speeds. The tests were performed on a generic axisymmetric body in the Mach-number range of 0.7-1.2, and the important geometrical parameters, namely, the boat-tail angle and diameter ratio, were varied systematically. The measurements made included primarily the mean and unsteady surface-pressure fluctuations on nine different model configurations. Flow-visualization studies employing a surface oil flow, and schlieren techniques were carried out to infer features like boundary-layer separation, reattachment, and shock waves in the flow. The features of mean and fluctuating surface pressures are discussed in detail including aspects of similarity. It has been observed that, on a generic configuration employed in the present study, the maximum levels of surface-pressure fluctuations in the reattachment zone are appreciably lower than those found on launch vehicle configurations having a bulbous or hammerhead nose shape. A simple correlation is suggested for the maximum value of rms pressure fluctuations in the reattachment zone at different freestream Mach numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three-dimensional asymmetric turbulent near-Rake behind an infinitely swept wing with GAW(2) airfoil has been investigated at low speeds. The near-wake in the present study is asymmetric because the boundary layers on the top and bottom surfaces of the model develop under different streamwise pressure gradients. Distributions of mean velocity, three turbulent normal stresses, and two important Reynolds shear stresses have been measured using hot-wire anemometry. The profiles of mean velocity and Reynolds shear stress exhibit asymmetry near the trailing edge and seem to have become symmetric within a short distance of 6 trailing edge momentum thicknesses. Results of computation using K-epsilon turbulence model with a simple scheme to predict the near-wake behind the swept wing have also been presented and compared with the experimental data. The agreement of the predicted mean How development with the experiment is fair considering the simplicity of the scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two backward-facing models with step heights of 2 and 3 mm are used to measure the convective surface heat transfer rates by using platinum thin-film gauges, deposited on Macor inserts. Heat transfer rates have been theoretically calculated along the flat plate portion of a model using the Eckert reference temperature method. The experimentally determined surface heat transfer rate distributions are compared with theoretical and numerical estimations. Experimental heat flux distribution over a flat plate model showed good agreement with the reference temperature method at stagnation enthalpy range of 0.8-2 MJ/kg. Theoretical analysis has been used for downstream of a backward-facing step using Gai's nondimensional analysis. It has been found from the present study that approximately 10 and 8 step heights are required for the flow to reattach for 2 and 3 mm step height backward-facing step models, respectively, at a nominal Mach number of 7.6.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is focused on the development of a model for predicting the mean drop size in effervescent sprays. A combinatorial approach is followed in this modeling scheme, which is based on energy and entropy principles. The model is implemented in cascade in order to take primary breakup (due to exploding gas bubbles) and secondary breakup (due to shearing action of surrounding medium) into account. The approach in this methodology is to obtain the most probable drop size distribution by maximizing the entropy while satisfying the constraints of mass and energy balance. The comparison of the model predictions with the past experimental data is presented for validation. A careful experimental study is conducted over a wide range of gas-to-liquid ratios, which shows a good agreement with the model predictions: It is observed that the model gives accurate results in bubbly and annular flow regimes. However, discrepancies are observed in the transitional slug flow regime of the atomizer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of structural and aerodynamic uncertainties on the performance predictions of a helicopter is investigated. An aerodynamic model based on blade element and momentum theory is used to predict the helicopter performance. The aeroelastic parameters, such as blade chord, rotor radius, two-dimensional lift-curve slope, blade profile drag coefficient, rotor angular velocity, blade pitch angle, and blade twist rate per radius of the rotor, are considered as random variables. The propagation of these uncertainties to the performance parameters, such as thrust coefficient and power coefficient, are studied using Monte Carlo Simulations. The simulations are performed with 100,000 samples of structural and aerodynamic uncertain variables with a coefficient of variation ranging from 1 to 5%. The scatter in power predictions in hover, axial climb, and forward flight for the untwisted and linearly twisted blades is studied. It is found that about 20-25% excess power can be required by the helicopter relative to the determination predictions due to uncertainties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear suboptimal guidance law is presented in this paper for successful interception of ground targets by air-launched missiles and guided munitions. The main feature of this guidance law is that it accurately satisfies terminal impact angle constraints in both azimuth as well as elevation simultaneously. In addition, it is capable of hitting the target with high accuracy as well as minimizing the lateral acceleration demand. The guidance law is synthesized using recently developed model predictive static programming (MPSP). Performance of the proposed MPSP guidance is demonstrated using three-dimensional (3-D) nonlinear engagement dynamics by considering stationary, moving, and maneuvering targets. Effectiveness of the proposed guidance has also been verified by considering first. order autopilot lag as well as assuming inaccurate information about target maneuvers. Multiple munitions engagement results are presented as well. Moreover, comparison studies with respect to an augmented proportional navigation guidance (which does not impose impact angle constraints) as well as an explicit linear optimal guidance (which imposes the same impact angle constraints in 3-D) lead to the conclusion that the proposed MPSP guidance is superior to both. A large number of randomized simulation studies show that it also has a larger capture region.