217 resultados para Ascorbate
Resumo:
The tissue changes that occur in Chagas disease are related to the degree of oxidative stress and antioxidant capacity of affected tissue. Studies with vitamin C supplementation did not develop oxidative damage caused by Chagas disease in the host, but other studies cite the use of peroxiredoxins ascorbate - dependent on T. cruzi to offer protection against immune reaction. Based on these propositions, thirty "Swiss" mice were infected with T. cruzi QM1 strain and treated with two different vitamin C doses in order to study the parasitemia evolution, histopathological changes and lipid peroxidation biomarkers during the acute phase of Chagas disease. The results showed that the parasite clearance was greater in animals fed with vitamin C overdose. There were no significant differences regarding the biomarkers of lipid peroxidation and inflammatory process or the increase of myocardium in animals treated with the recommended dosage. The largest amount of parasite growth towards the end of the acute phase suggests the benefit of high doses of vitamin C for trypomastigotes. The supplementation doesn't influence the production of free radicals or the number of amastigote nests in the acute phase of Chagas disease.
Resumo:
The aim of this study was to assess, using the DPPH assay, the antioxidant activity of several substances that could be proposed to immediately revert the problems caused by bleaching procedures. The percentage of antioxidant activity (AA%) of 10% ascorbic acid solution (AAcidS), 10% ascorbic acid gel (AAcidG), 10% sodium ascorbate solution (SodAsS), 10% sodium ascorbate gel (SodAsG), 10% sodium bicarbonate (Bicarb), Neutralize® (NE), Desensibilize® (DES), catalase C-40 at 10 mg/mL (CAT), 10% alcohol solution of alpha-tocopherol (VitE), Listerine® (LIS), 0.12% chlorhexidine (CHX), Croton Lechleri (CL), 10 % aqueous solution of Uncaria Tomentosa (UT), artificial saliva (ArtS) and 0.05% sodium fluoride (NaF) was assessed in triplicate by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical assay. All substances exhibited antioxidant activity, except for CL. AAcidS, AAcidG and VitE exhibited the highest AA% (p<0.05). On the contrary, CHX, NE, LIS and NaF showed the lowest AA% (p<0.05). In conclusion, AAcidS, AAcidG, SodAsS, SodAsG and VitE presented the highest antioxidant activity among substances tested in this study. The DPPH assay provides an easy and rapid way to evaluate potential antioxidants.
Resumo:
'Golden' papayas at maturity stage 1 (15% yellow skin) were chosen to study selected oxidative processes, the activity of antioxidant enzymes and lipid peroxidation in storage at 22°C, during the ripening of the fruit. An increase in ethylene production was observed on the second day of storage and it was followed by an increase in respiration. An increased activity of catalase, glutathione reductase and ascorbate peroxidase was observed concurrently or soon after this increase in ethylene production and respiration. The increased activity of these enzymes near the peaks of ethylene production and respiration is related to the production of oxidants accompanying the onset of ripening. On the fourth day of storage, there was an increased lipid peroxidation and decreased activities of catalase, glutathione reductase and superoxide dismutase. Lipid peroxidation induces the increase of antioxidant enzymes, which can be verified by further increases in the activities of catalase, glutathione reductase, superoxide dismutase and ascorbate peroxidase. Unlike the other antioxidant enzymes, the ascorbate peroxidase activity in the pulp increased continuously during ripening, suggesting its important role in combating reactive oxygen species during papaya ripening. With regard to physical-chemical characteristics, the soluble solids did not vary significantly, the acidity and ascorbic acid contents increased, and hue angle and firmness decreased during storage. The results revealed that there was variation in the activity of antioxidant enzymes, with peaks of lipid peroxidation during the ripening of 'Golden' papaya. These results provide a basis for future research, especially with regard to the relationships among the climacteric stage, the activation of antioxidant enzymes and the role of ascorbate peroxidase in papaya ripening.
Resumo:
The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 – 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or improving this efficiency becomes pivotal for scientist and fruit growers. Even tough a conspicuous energy amount is reflected or transmitted, plants can not avoid to absorb photons in excess. The chlorophyll over-excitation promotes the reactive species production increasing the photoinhibition risks. The dangerous consequences of photoinhibition forced plants to evolve a complex and multilevel machine able to dissipate the energy excess quenching heat (Non Photochemical Quenching), moving electrons (water-water cycle , cyclic transport around PSI, glutathione-ascorbate cycle and photorespiration) and scavenging the generated reactive species. The price plants must pay for this equipment is the use of CO2 and reducing power with a consequent decrease of the photosynthetic efficiency, both because some photons are not used for carboxylation and an effective CO2 and reducing power loss occurs. Net photosynthesis increases with light until the saturation point, additional PPFD doesn’t improve carboxylation but it rises the efficiency of the alternative pathways in energy dissipation but also ROS production and photoinhibition risks. The wide photo-protective apparatus, although is not able to cope with the excessive incoming energy, therefore photodamage occurs. Each event increasing the photon pressure and/or decreasing the efficiency of the described photo-protective mechanisms (i.e. thermal stress, water and nutritional deficiency) can emphasize the photoinhibition. Likely in nature a small amount of not damaged photosystems is found because of the effective, efficient and energy consuming recovery system. Since the damaged PSII is quickly repaired with energy expense, it would be interesting to investigate how much PSII recovery costs to plant productivity. This PhD. dissertation purposes to improve the knowledge about the several strategies accomplished for managing the incoming energy and the light excess implication on photo-damage in peach. The thesis is organized in three scientific units. In the first section a new rapid, non-intrusive, whole tissue and universal technique for functional PSII determination was implemented and validated on different kinds of plants as C3 and C4 species, woody and herbaceous plants, wild type and Chlorophyll b-less mutant and monocot and dicot plants. In the second unit, using a “singular” experimental orchard named “Asymmetric orchard”, the relation between light environment and photosynthetic performance, water use and photoinhibition was investigated in peach at whole plant level, furthermore the effect of photon pressure variation on energy management was considered on single leaf. In the third section the quenching analysis method suggested by Kornyeyev and Hendrickson (2007) was validate on peach. Afterwards it was applied in the field where the influence of moderate light and water reduction on peach photosynthetic performances, water requirements, energy management and photoinhibition was studied. Using solar energy as fuel for life plant is intrinsically suicidal since the high constant photodamage risk. This dissertation would try to highlight the complex relation existing between plant, in particular peach, and light analysing the principal strategies plants developed to manage the incoming light for deriving the maximal benefits as possible minimizing the risks. In the first instance the new method proposed for functional PSII determination based on P700 redox kinetics seems to be a valid, non intrusive, universal and field-applicable technique, even because it is able to measure in deep the whole leaf tissue rather than the first leaf layers as fluorescence. Fluorescence Fv/Fm parameter gives a good estimate of functional PSII but only when data obtained by ad-axial and ab-axial leaf surface are averaged. In addition to this method the energy quenching analysis proposed by Kornyeyev and Hendrickson (2007), combined with the photosynthesis model proposed by von Caemmerer (2000) is a forceful tool to analyse and study, even in the field, the relation between plant and environmental factors such as water, temperature but first of all light. “Asymmetric” training system is a good way to study light energy, photosynthetic performance and water use relations in the field. At whole plant level net carboxylation increases with PPFD reaching a saturating point. Light excess rather than improve photosynthesis may emphasize water and thermal stress leading to stomatal limitation. Furthermore too much light does not promote net carboxylation improvement but PSII damage, in fact in the most light exposed plants about 50-60% of the total PSII is inactivated. At single leaf level, net carboxylation increases till saturation point (1000 – 1200 μmolm-2s-1) and light excess is dissipated by non photochemical quenching and non net carboxylative transports. The latter follows a quite similar pattern of Pn/PPFD curve reaching the saturation point at almost the same photon flux density. At middle-low irradiance NPQ seems to be lumen pH limited because the incoming photon pressure is not enough to generate the optimum lumen pH for violaxanthin de-epoxidase (VDE) full activation. Peach leaves try to cope with the light excess increasing the non net carboxylative transports. While PPFD rises the xanthophyll cycle is more and more activated and the rate of non net carboxylative transports is reduced. Some of these alternative transports, such as the water-water cycle, the cyclic transport around the PSI and the glutathione-ascorbate cycle are able to generate additional H+ in lumen in order to support the VDE activation when light can be limiting. Moreover the alternative transports seems to be involved as an important dissipative way when high temperature and sub-optimal conductance emphasize the photoinhibition risks. In peach, a moderate water and light reduction does not determine net carboxylation decrease but, diminishing the incoming light and the environmental evapo-transpiration request, stomatal conductance decreases, improving water use efficiency. Therefore lowering light intensity till not limiting levels, water could be saved not compromising net photosynthesis. The quenching analysis is able to partition absorbed energy in the several utilization, photoprotection and photo-oxidation pathways. When recovery is permitted only few PSII remained un-repaired, although more net PSII damage is recorded in plants placed in full light. Even in this experiment, in over saturating light the main dissipation pathway is the non photochemical quenching; at middle-low irradiance it seems to be pH limited and other transports, such as photorespiration and alternative transports, are used to support photoprotection and to contribute for creating the optimal trans-thylakoidal ΔpH for violaxanthin de-epoxidase. These alternative pathways become the main quenching mechanisms at very low light environment. Another aspect pointed out by this study is the role of NPQ as dissipative pathway when conductance becomes severely limiting. The evidence that in nature a small amount of damaged PSII is seen indicates the presence of an effective and efficient recovery mechanism that masks the real photodamage occurring during the day. At single leaf level, when repair is not allowed leaves in full light are two fold more photoinhibited than the shaded ones. Therefore light in excess of the photosynthetic optima does not promote net carboxylation but increases water loss and PSII damage. The more is photoinhibition the more must be the photosystems to be repaired and consequently the energy and dry matter to allocate in this essential activity. Since above the saturation point net photosynthesis is constant while photoinhibition increases it would be interesting to investigate how photodamage costs in terms of tree productivity. An other aspect of pivotal importance to be further widened is the combined influence of light and other environmental parameters, like water status, temperature and nutrition on peach light, water and phtosyntate management.
Sviluppo di biosensori: modifiche di superfici elettrodiche e sistemi di immobilizzazione enzimatica
Resumo:
An amperometric glucose biosensor was developed using an anionic clay matrix (LDH) as enzyme support. The enzyme glucose oxidase (GOx) was immobilized on a layered double hydroxide Ni/Al-NO3 LDH during the electrosynthesis, which was followed by crosslinking with glutaraldehyde (GA) vapours or with GA and bovine serum albumin (GABSA) to avoid the enzyme release. The electrochemical reaction was carried out potentiostatically, at -0.9V vs. SCE, using a rotating disc Pt electrode to assure homogeneity of the electrodeposition suspension, containing GOx, Ni(NO3)2 and Al(NO3)3 in 0.3 M KNO3. The mechanism responsible of the LDH electrodeposition involves the precipitation of the LDH due to the increase of pH at the surface of the electrode, following the cathodic reduction of nitrates. The Pt surface modified with the Ni/Al-NO3 LDH shows a much reduced noise, giving rise to a better signal to noise ratio for the currents relative to H2O2 oxidation, and a linear range for H2O2 determination wider than the one observed for bare Pt electrodes. We pointed out the performances of the biosensor in terms of sensitivity to glucose, calculated from the slope of the linear part of the calibration curve for enzimatically produced H2O2; the sensitivity was dependent on parameters related to the electrodeposition in addition to working conditions. In order to optimise the glucose biosensor performances, with a reduced number of experimental runs, we applied an experimental design. A first screening was performed considering the following variables: deposition time (30 - 120 s), enzyme concentration (0.5 - 3.0 mg/mL), Ni/Al molar ratio (3:1 or 2:1) of the electrodeposition solution at a total metals concentration of 0.03 M and pH of the working buffer solution (5.5-7.0). On the basis of the results from this screening, a full factorial design was carried out, taking into account only enzyme concentration and Ni/Al molar ratio of the electrosynthesis solution. A full factorial design was performed to study linear interactions between factors and their quadratic effects and the optimal setup was evaluated by the isoresponse curves. The significant factors were: enzyme concentration (linear and quadratic terms) and the interaction between enzyme concentration and Ni/Al molar ratio. Since the major obstacle for application of amperometric glucose biosensors is the interference signal resulting from other electro-oxidizable species present in the real matrices, such as ascorbate (AA), the use of different permselective membranes on Pt-LDHGOx modified electrode was discussed with the aim of improving biosensor selectivity and stability. Conventional membranes obtained using Nafion, glutaraldehyde (GA) vapours, GA-BSA were tested together with more innovative materials like palladium hexacyanoferrate (PdHCF) and titania hydrogels. Particular attention has been devoted to hydrogels, because they possess some attractive features, which are generally considered to favour biosensor materials biocompatibility and, consequently, the functional enzyme stability. The Pt-LDH-GOx-PdHCF hydrogel biosensor presented an anti-interferant ability so that to be applied for an accurate glucose analysis in blood. To further improve the biosensor selectivity, protective membranes containing horseradish peroxidase (HRP) were also investigated with the aim of oxidising the interferants before they reach the electrode surface. In such a case glucose determination was also accomplished in real matrices with high AA content. Furthermore, the application of a LDH containing nickel in the oxidised state was performed not only as a support for the enzyme, but also as anti-interferant sistem. The result is very promising and it could be the starting point for further applications in the field of amperometric biosensors; the study could be extended to other oxidase enzymes.
Resumo:
The aim of the present study is understanding the properties of a new group of redox proteins having in common a DOMON-type domain with characteristics of cytochromes b. The superfamily of proteins containing a DOMON of this type includes a few protein families. With the aim of better characterizing this new protein family, the present work addresses both a CyDOM protein (a cytochrome b561) and a protein only comprised of DOMON(AIR12), both of plant origin. Apoplastic ascorbate can be regenerated from monodehydroascorbate by a trans-plasma membrane redox system which uses cytosolic ascorbate as a reductant and comprises a high potential cytochrome b. We identified the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis auxin-responsive gene air12. The protein, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol-modification signal, and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a β-sandwich domain and belonging to the DOMON superfamily. It is shown to be a b-type cytochrome with a symmetrical α-band at 561 nm, to be fully reduced by ascorbate and fully oxidized by monodehydroascorbate. Redox potentiometry suggests that AIR12 binds two high-potential hemes (Em,7 +135 and +236 mV). Phylogenetic analyses reveal that the auxin-responsive genes AIR12 constitute a new family of plasma membrane b-type cytochromes specific to flowering plants. Although AIR12 is one of the few redox proteins of the PM characterized to date, the role of AIR12 in trans-PM electron transfer would imply interaction with other partners which are still to be identified. Another part of the present project was aimed at understanding of a soybean protein comprised of a DOMON fused with a well-defined b561 cytochrome domain (CyDOM). Various bioinformatic approaches show this protein to be composed of an N-terminal DOMON followed by b561 domain. The latter contains five transmembrane helices featuring highly conserved histidines, which might bind haem groups. The CyDOM has been cloned and expressed in the yeast Pichia pastoris, and spectroscopic analyses have been accomplished on solubilized yeast membranes. CyDOM clearly reveal the properties of b-type cytochrome. The results highlight the fact that CyDOM is clearly able to lead an electron flux through the plasmamembrane. Voltage clamp experiments demonstrate that Xenopus laevis oocytes transformed with CyDOM of soybean exhibit negative electrical currents in presence of an external electron acceptor. Analogous investigations were carried out with SDR2, a CyDOM of Drosophila melanogaster which shows an electron transport capacity even higher than plant CyDOM. As quoted above, these data reinforce those obtained in plant CyDOM on the one hand, and on the other hand allow to attribute to SDR2-like proteins the properties assigned to CyDOM. Was expressed in Regenerated tobacco roots, transiently transformed with infected a with chimeral construct GFP: CyDOM (by A. rhizogenes infection) reveals a plasmamembrane localization of CyDOM both in epidermal cells of the elongation zone of roots and in root hairs. In conclusion. Although the data presented here await to be expanded and in part clarified, it is safe to say they open a new perspective about the role of this group of proteins. The biological relevance of the functional and physiological implications of DOMON redox domains seems noteworthy, and it can but increase with future advances in research. Beyond the very finding, however interesting in itself, of DOMON domains as extracellular cytochromes, the present study testifies to the fact that cytochrome proteins containing DOMON domains of the type of “CyDOM” can transfer electrons through membranes and may represent the most important redox component of the plasmamembrane as yet discovered.
Resumo:
The DOMON domain is a domain widespread in nature, predicted to fold in a β-sandwich structure. In plants, AIR12 is constituted by a single DOMON domain located in the apoplastic space and is GPI-modified for anchoring to the plasma membrane. Arabidopsis thaliana AIR12 has been heterologously expressed as a recombinant protein (recAtAIR12) in Pichia pastoris. Spectrophotometrical analysis of the purified protein showed that recAtAir12 is a cytochrome b. RecAtAIR12 is highly glycosylated, it is reduced by ascorbate, superoxide and naftoquinones, oxidised by monodehydroascorbate and oxygen and insensitive to hydrogen peroxide. The addition of recAtAIR12 to permeabilized plasma membranes containing NADH, FeEDTA and menadione, caused a statistically significant increase in hydroxyl radicals as detected by electron paramagnetic resonance. In these conditions, recAtAIR12 has thus a pro-oxidant role. Interestingly, AIR12 is related to the cytochrome domain of cellobiose dehydrogenase which is involved in lignin degradation, possibly via reactive oxygen species (ROS) production. In Arabidopsis the Air12 promoter is specifically activated at sites where cell separations occur and ROS, including •OH, are involved in cell wall modifications. air12 knock-out plants infected with Botrytis cinerea are more resistant than wild-type and air12 complemented plants. Also during B. cinerea infection, cell wall modifications and ROS are involved. Our results thus suggest that AIR12 could be involved in cell wall modifying reactions by interacting with ROS and ascorbate. CyDOMs are plasma membrane redox proteins of plants that are predicted to contain an apoplastic DOMON fused with a transmembrane cytochrome b561 domain. CyDOMs have never been purified nor characterised. The trans-membrane portion of a soybean CyDOM was expressed in E. coli but purification could not be achieved. The DOMON domain was expressed in P. pastoris and shown to be itself a cytochrome b that could be reduced by ascorbate.
Resumo:
Mitotische und postmitotische Vorgänge pflanzlicher Zellen basieren auf der Funktion von Mikrotubuli. Es liegen nur wenige gesicherte Erkenntnisse zur Organisation dieser Multifunktionalität vor. Eine zentrale Bedeutung wird bei der Nukleation der Mikrotubuli an MTOCs durch γ-Tubulin zugeschrieben. Deren Zusammenlagerung an MTOCs ist jedoch noch nicht richtig verstanden. Domänen, die an der Proteinoberfläche exponiert werden, könnten in Interaktionen involviert sein. Hier werden im Besonderen der γ-A und γ-B-Peptivmotiv diskutiert. Es wurde das γ-A- und γ-B-Peptidmotiv des γ-Tubulins hinsichtlich einer Konservierung innerhalb des Pflanzenreiches untersucht. Die beiden Bereiche sind bei den grünen Landpflanzen stark konserviert. Sie divergieren stark zu den einzelligen Grünalgen Chlamydomonas reinhardtii und Chlorella spec. Es wurden daher in der bestehenden phylogentischen Lücke weitere Organismen hinsichtlich des γ-A und γ-B Peptidmotivs untersucht. Auswahlkriterien der Organismen waren Ein-/Mehrzelligkeit, Besitz/Abwesenheit von Centriolen und Besitz/Abwesenheit von Geißeln. Des weiteren wurde mit verschiedenen γ-Tubulin-Konstrukten um das γ-A- und γ-B-Peptidmotiv, gewonnen aus Nicotiana tabacum (BY2) mittels Y2H-System nach Interaktionspartnern gesucht. Bei den Sequenzuntersuchungen des γ-A- und γ-B-Peptidmotivs konnte festgestellt werden, dass die Konservierung innerhalb der Streptophytenlinie erfolgt. Interessant erweist sich die Tatsache, dass dieses Motiv bei den Jochalgen, welche ebenfalls den Streptophyten angehören, nur im γ-A-Peptidmotiv auftritt. Es besteht die Möglichkeit, dass die beiden potentiellen Interaktionspartner verschiedene Proteine als Interaktions-partner besitzen. Durch eine Anwendung eines auf dem GAL4-Protein basierenden Y2H-Systems mit vier unterschiedlichen Konstrukten des γ-Tubulin-A/B-Peptidbereichs als Köder-konstrukt und einer cDNA-Bibliothek als Beutekonstrukt, wurden diverse Sequenzen identifiziert. Identifiziert wurden das Poly(A)-Bindeprotein, Glycerin-aldehyd-3-phosphatdehydrogenase, die S-adenosyl-L-methionine-Synthetase, diverse Proteasom-Untereinheiten, eine sekretorische Peroxidase, eine Ascorbat-Peroxidase, die NtPOX1-Peroxidase und verschiedene Peroxidasen aus Nicotiana tabacum, Sequenzen des Chloroplastengenoms, ein Myosin-ähnliches Protein und eine Sequenz auf dem 5. Chromosom des Medicago truncatula-Klons mth2-16f8 und diverse humane Sequenzen der Proteine DKFZp68 und DKFZp77. Die Ergebnisse weisen auf eine komplexe Funktionsweise der unterschiedlichen Komponenten des pflanzlichen Cytoskeletts und des γ-Tubulins hin. Zur Aufklärung müsste dies in Zukunft mittels anderer genetischer, biochemischer oder funktioneller Methoden untersucht werden. Hypothesen über Interaktionen der Cytoskelettkomponenten können wahrscheinlich nicht allein durch die Anwendung des Y2H-Systems aufgeklärt werden.
Resumo:
Vitamin C (ascorbic acid) is required for the synthesis of collagen, carnitine, catecholamine and the neurotransmitter norepinephrine. Vitamin C also plays an important role in protection against oxidative stress. Transporters for vitamin C and its oxidized form dehydroascorbate (DHA) are crucial to keep vitamin concentrations optimal in the body. The human SLC23 family consists of the Na(+)-dependent vitamin C transporters SVCT1 (SLC23A1) and SVCT2 (SLC23A2) and the orphan transporter SVCT3 (SLC23A3). Phylogenetically, the SLC23 family belongs to the nucleobase-ascorbate transporter family although no specificity for nucleobases has yet been demonstrated for the human members of this family. In fact, the SVCT1 and SVCT2 transporters are rather specific for ascorbic acid. SVCT1 is expressed in epithelial tissues such as intestine, where it contributes to the maintenance of whole-body ascorbic acid levels, whereas the expression of SVCT2 is relatively widespread either to protect metabolically active cells and specialized tissues from oxidative stress or to deliver ascorbic acid to tissues that are in high demand of the vitamin for enzymatic reactions. DHA, the oxidized form of ascorbic acid is taken up and distributed in the body by facilitated transport via members of the SLC2/GLUT family (GLUT1, GLUT3, and GLUT4). Although, the main focus of this review is on the SLC23 family of ascorbic acid transporters, transporters of DHA and nucleobases are also briefly discussed for completeness.
Resumo:
Transporters for vitamin C and its oxidized form dehydroascorbic acid (DHA) are crucial to maintain physiological concentrations of this important vitamin that is used in a variety of biochemical processes. The human SLC23 family consists of the Na(+)-dependent vitamin C transporters SVCT1 (encoded by the SLC23A1 gene) and SVCT2 (SLC23A2) as well as an orphan transporter SVCT3 (SLC23A3). Phylogenetically, the SLC23 family belongs to the nucleobase-ascorbate transporter (NAT) family, although no nucleobase transport has yet been demonstrated for the human members of this family. The SVCT1 and SVCT2 transporters are rather specific for ascorbic acid, which is an important antioxidant and plays a crucial role in a many metal-containing enzymes. SVCT1 is expressed predominantly in epithelial tissues such as intestine where it contributes to the supply and maintenance of whole-body ascorbic acid levels. In contrast to various other mammals, humans are not capable of synthesizing ascorbic acid from glucose and therefore the uptake of ascorbic acid from the diet via SVCT1 is essential for maintaining appropriate concentrations of vitamin C in the human body. The expression of SVCT2 is relatively widespread, where it serves to either deliver ascorbic acid to tissues with high demand of the vitamin for enzymatic reactions or to protect metabolically highly active cells or specialized tissues from oxidative stress. The murine Slc23a3 gene encoding the orphan transporter SVCT3 was originally cloned from mouse yolk sac, and subsequent studies showed that it is expressed in the kidney. However, the function of SVCT3 has not been reported and it remains speculative as to whether SVCT3 is a nucleobase transporter.
Resumo:
Neonatal cattle and in part neonates of other species have manyfold higher plasma concentrations of nitrite plus nitrate than mature cows and subjects of other species, suggesting an enhanced and needed activation of the nitric oxide (NO) axis at birth. While the biological half-life of NO is short (<1 sec), its functionality can be prolonged, and in many regards more discretely modulated, when it reacts with low-molecular-weight and protein-bound thiols to form S-nitrosothiols (RSNO), from which NO subsequently can be rereleased. We used the calf as a model to test the hypothesis that plasma concentrations of RSNO are elevated at birth in mammals, correlate with ascorbate and urate levels, are selectively generated in critical tissue beds, and are generated in a manner temporally coincident with changes in tissue levels of active NO synthases (NOS). Plasma concentrations of RSNO, ascorbate, and urate were highest immediately after birth (Day 0), dropped >50% on Day 1, and gradually decreased over time, reaching a nadir in mature cattle. Albumin and immunoglobulin G were identified as major plasma RSNO. The presence of S-nitrosocysteine (SNC, a validated marker for S-nitrosylated proteins), inducible NOS (iNOS), and activated endothelial NOS (eNOS phosphorylated at Ser1177) in different tissues was analyzed by immunohistochemistry in another group of similar-aged calves. SNC, iNOS, and phosphorylated eNOS were detected in liver and ileum at the earliest timepoint of sampling (4 hrs after birth), increased between 4 and 24 hrs, and then declined to near-nondetectable levels by 2 weeks of life. Our data show that the neonatal period in the bovine species is characterized by highly elevated and coordinated NO-generating and nitrosylation events, with the ontogenetic changes occurring in iNOS and eNOS contents in key tissues as well as RSNO products and associated antioxidant markers.
Resumo:
Neonates are particularly susceptible to malnutrition due to their limited reserves of micronutrients and their rapid growth. In the present study, we examined the effect of vitamin C deficiency on markers of oxidative stress in plasma, liver and brain of weanling guinea pigs. Vitamin C deficiency caused rapid and significant depletion of ascorbate (P < 0.001), tocopherols (P < 0.001) and glutathione (P < 0.001), and a decrease in superoxide dismutase activity (P = 0.005) in the liver, while protein oxidation was significantly increased (P = 0.011). No changes in lipid oxidation or oxidatively damaged DNA were observed in this tissue. In the brain, the pattern was markedly different. Of the measured antioxidants, only ascorbate was significantly depleted (P < 0.001), but in contrast to the liver, ascorbate oxidation (P = 0.034), lipid oxidation (P < 0.001), DNA oxidation (P = 0.13) and DNA incision repair (P = 0.014) were all increased, while protein oxidation decreased (P = 0.003). The results show that the selective preservation of brain ascorbate and induction of DNA repair in vitamin C-deficient weanling guinea pigs is not sufficient to prevent oxidative damage. Vitamin C deficiency may therefore be particularly adverse during the neonatal period.
Resumo:
Pediatric cardiac surgery with cardiopulmonary bypass (CPB) is frequently associated with neurologic deficits. We describe the postoperative EEG changes, assess their possible causes, and evaluate their relevance to neurologic outcome. Thirty-one children and five neonates with congenital heart disease were included. EEG recording started after intubation and continued until 22-96 h after CPB. In addition to conventional analysis, spectral analysis was performed for occipital and frontal electrodes, and differences between pre- and postoperative delta power (delta-deltaP) were calculated. Maximum values of occipital delta-deltaP that occurred within 48 h after CPB were correlated with clinical variables and with perioperative markers of oxidative stress and inflammation. Occipital delta-deltaP correlated with frontal delta-deltaP, and maximum delta-deltaP correlated with conventional rating. Distinct rise of deltaP was detected in 18 of 21 children without any acute or long-term neurologic deficits but only in five of 10 children with temporary or permanent neurologic deficits. Furthermore, maximally registered delta-deltaP was inversely associated with duration of CPB and postoperative ventilation. Maximal delta-deltaP was also inversely associated with the loss of plasma ascorbate (as an index of oxidative stress) and plasma levels of IL-6 and IL-8. Slow wave activity frequently occurs within 48 h after CPB. However, our data do not support the notion that EEG slowing is associated with adverse neurologic outcome. This is supported by the fact that EEG slowing was associated with less oxido-inflammatory stress.
Resumo:
Oxidative stress seems to contribute to cardiopulmonary bypass (CPB)-related postoperative complications. Pediatric patients are particularly prone to these complications. With this in mind, we measured oxidative stress markers in blood plasma of 20 children undergoing elective heart surgery before, during, and up to 48 h after cessation of CPB, along with inflammatory parameters and full analysis of iron status. Ascorbate levels were decreased by approximately 50% (P < 0.001) at the time of aorta cross-clamp removal (or pump switch-off in 4 patients with partial CPB), and associated with corresponding increases in dehydroascorbate (P < 0.001, r = -0.80) and malondialdehyde (P < 0.01, r = -0.59). In contrast to the immediate oxidative response, peak levels of IL-6 and IL-8 were not observed until 3-12 h after CPB cessation. The early loss of ascorbate correlated with duration of CPB (P < 0.002, r = 0.72), plasma hemoglobin after cross-clamp removal (P < 0.001, r = 0.70), and IL-6 and IL-8 levels at 24 and 48 h after CPB (P < 0.01), but not with postoperative lactate levels, strongly suggesting that hemolysis, and not inflammation or ischemia, was the main cause of early oxidative stress. The correlation of ventilation time with early changes in ascorbate (P < 0.02, r = 0.55), plasma hemoglobin (P < 0.01, r = 0.60), and malondialdehyde (P < 0.02, r = 0.54) suggests that hemolysis-induced oxidative stress may be an underlying cause of CPB-associated pulmonary dysfunction. Optimization of surgical procedures or therapeutic intervention that minimize hemolysis (e.g., off-pump surgery) or the resultant oxidative stress (e.g., antioxidant treatment) should be considered as possible strategies to lower the rate of postoperative complications in pediatric CPB.
Resumo:
Antioxidant treatment has previously been shown to be neuroprotective in experimental bacterial meningitis. To obtain quantitative evidence for oxidative stress in this disease, we measured the major brain antioxidants ascorbate and reduced glutathione, and the lipid peroxidation endproduct malondialdehyde in the cortex of infant rats infected with Streptococcus pneumoniae. Cortical levels of the two antioxidants were markedly decreased 22 h after infection, when animals were severely ill. Total pyridine nucleotide levels in the cortex were unaltered, suggesting that the loss of the two antioxidants was not due to cell necrosis. Bacterial meningitis was accompanied by a moderate, significant increase in cortical malondialdehyde. While treatment with either of the antioxidants alpha-phenyl-tert-butyl nitrone or N-acetylcysteine significantly inhibited this increase, only the former attenuated the loss of endogenous antioxidants. Cerebrospinal fluid bacterial titer, nitrite and nitrate levels, and myeloperoxidase activity at 18 h after infection were unaffected by antioxidant treatment, suggesting that they acted by mechanisms other than modulation of inflammation. The results demonstrate that bacterial meningitis is accompanied by oxidative stress in the brain parenchyma. Furthermore, increased cortical lipid peroxidation does not appear to be the result of parenchymal oxidative stress, because it was prevented by NAC, which had no effect on the loss of brain antioxidants.