168 resultados para Apportionment
Resumo:
Carbonaceous particles that comprise organic carbon (OC) and elemental carbon (EC) are of increasing interest in climate research because of their influence on the radiation balance of the Earth. The radiocarbon determination of particulate OC and EC extracted from ice cores provides a powerful tool to reconstruct the long-term natural and anthropogenic emissions of carbonaceous particles. However, this C-14-based source apportionment method has not been applied for the firn section, which is the uppermost part of Alpine glaciers with a typical thickness of up to 50 m. In contrast to glacier ice, firn samples are more easily contaminated through drilling and handling operations. In this study, an alternative decontamination method for firn samples consisting of chiselling off the outer parts instead of rinsing them was developed and verified. The obtained procedural blank of 2.8 +/- 0.8 mu g C for OC is a factor of 2 higher compared to the rinsing method used for ice, but still relatively low compared to the typical OC concentration in firn samples from Alpine glaciers. The EC blank of 0.3 +/- 0.1 mu g C is similar for both methods. For separation of OC and EC for subsequent C-14 analysis, a thermal-optical method instead of the purely thermal method was applied for the first time to firn and ice samples, resulting in a reduced uncertainty of both the mass and C-14 determination. OC and EC concentrations as well as their corresponding fraction of modern for firn and ice samples from Fiescherhorn and Jungfraujoch agree well with published results, validating the new method.
Resumo:
Radiocarbon analysis of the carbonaceous aerosol allows an apportionment of fossil and non-fossil sources of airborne particulate matter (PM). A chemical separation of total carbon (TC) into its subfractions organic carbon (OC) and elemental carbon (EC) refines this powerful technique, as OC and EC originate from different sources and undergo different processes in the atmosphere. Although C-14 analysis of TC, EC, and OC has recently gained increasing attention, interlaboratory quality assurance measures have largely been missing, especially for the isolation of EC and OC. In this work, we present results from an intercomparison of 9 laboratories for C-14 analysis of carbonaceous aerosol samples on quartz fiber filters. Two ambient PM samples and 1 reference material (RM 8785) were provided with representative filter blanks. All laboratories performed C-14 determinations of TC and a subset of isolated EC and OC for isotopic measurement. In general, C-14 measurements of TC and OC agreed acceptably well between the laboratories, i.e. for TC within 0.015-0.025 (FC)-C-14 for the ambient filters and within 0.041 (FC)-C-14 for RM 8785. Due to inhomogeneous filter loading, RM 8785 demonstrated only limited applicability as a reference material for C-14 analysis of carbonaceous aerosols. C-14 analysis of EC revealed a large deviation between the laboratories of 28-79 as a consequence of different separation techniques. This result indicates a need for further discussion on optimal methods of EC isolation for C-14 analysis and a second stage of this intercomparison.
Resumo:
Radiocarbon offers a unique possibility for unambiguous source apportionment of carbonaceous particles due to a direct distinction of non-fossil and fossil carbon. In this work, particulate matter of different size fractions was collected at 4 sites in Switzerland to examine whether fine and coarse carbonaceous particles exhibit different fossil and contemporary sources. Elemental carbon (EC) and organic carbon (OC) as well as water-soluble OC (WSOC) and water-insoluble OC (WINSOC) were separated and determined for subsequent 14C measurement. In general, both fossil and non-fossil fractions in OC and EC were found more abundant in the fine than in the coarse mode. However, a substantial fraction (~20 ± 5%) of fossil EC was found in coarse particles, which could be attributed to traffic-induced non-exhaust emissions. The contribution of biomass burning to coarse-mode EC in winter was relatively high, which is likely associated to the coating of EC with organic and/or inorganic substances emitted from intensive wood burning. Further, fossil OC (i.e. from vehicle emissions) was found to be smaller than non-fossil OC due to the presence of primary biogenic OC and/or growing in size of wood-burning OC particles during aging processes. 14C content in WSOC indicated that the second organic carbon rather stems from non-fossil precursors for all samples. Interestingly, both fossil and non-fossil WINSOC concentrations were found to be higher in fine particles than in coarse particles in winter, which is likely due to primary wood burning emissions and/or secondary formation of WINSOC.
Resumo:
During winter 2013, extremely high concentrations (i.e., 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily polluted days according to particulate matter mass. Despite a significant increase of the absolute mass concentrations of primary emissions from both fossil and non-fossil sources during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction in the increment of carbonaceous aerosols during the haze episode in China.
Resumo:
Determining the contribution of wood smoke to air pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions have been identified as a major cause of exceedances of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2:5 and determine whether local emissions or regional contributions were the main source of biomass smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction included contributions from secondary organic aerosols, primary biogenic and cooking sources. Source apportionment of the EC and OC was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Aethalometer-derived black carbon data were also apportioned into the contributions frombiomass burning and traffic and showed trends similar to those observed for EC. Mean wood smoke mass at the sites was estimated to range from 0.78 to 1.0 μgm-3 during the campaign in January–February 2012. Measurements on a 160m tower in London suggested a similar ratio of brown to black carbon (reflecting wood burning and traffic respectively) in regional and London air. Peaks in the levoglucosan and K+ concentrations were observed to coincide with low ambient temperature, consistent with domestic heating as a major contributing local source in London. Overall, the source of biomass smoke in London was concluded to be a background regional source overlaid by contributions from local domestic burning emissions. This could have implications when considering future emission control strategies during winter and may be the focus of future work in order to better determine the contributing local sources.
Resumo:
Radiocarbon (14C) measurements of both organic carbon (OC) and elemental carbon (EC) allow a more detailed source apportionment, leading to a full and unambiguous distinction and quantification of the contributions from non-fossil and fossil sources. A thermal-optical method with a commercial OC/EC analyzer to isolate water-insoluble OC (WIOC) and EC for their subsequent 14C measurement was applied for the first time to filtered precipitation samples collected at a costal site in Portugal and at a continental site in Switzerland. Our results show that WIOC in precipitation is dominated by non-fossil sources such as biogenic and biomass-burning emissions regardless of rain origins and seasons, whereas EC sources are shared by fossil-fuel combustion and biomass burning. In addition, monthly variation of WIOC in Switzerland was characterized by higher abundance in warm than in cold seasons, highlighting the importance of biogenic emissions to particulate carbon in rainwater. Samples with high particulate carbon concentrations in Portugal were found to be associated with increased biogenic input. Despite the importance of non-fossil sources, fossil emissions account for approximately 20% of particulate carbon in wet deposition for our study, which is in line with fossil contribution in bulk rainwater dissolved organic carbon as well as aerosol WIOC and EC estimated by the 14C approach from other studies.
Resumo:
AMS-14C applications often require the analysis of small samples. Such is the case of atmospheric aerosols where frequently only a small amount of sample is available. The ion beam physics group at the ETH, Zurich, has designed an Automated Graphitization Equipment (AGE III) for routine graphite production for AMS analysis from organic samples of approximately 1 mg. In this study, we explore the potential use of the AGE III for graphitization of particulate carbon collected in quartz filters. In order to test the methodology, samples of reference materials and blanks with different sizes were prepared in the AGE III and the graphite was analyzed in a MICADAS AMS (ETH) system. The graphite samples prepared in the AGE III showed recovery yields higher than 80% and reproducible 14C values for masses ranging from 50 to 300 lg. Also, reproducible radiocarbon values were obtained for aerosol filters of small sizes that had been graphitized in the AGE III. As a study case, the tested methodology was applied to PM10 samples collected in two urban cities in Mexico in order to compare the source apportionment of biomass and fossil fuel combustion. The obtained 14C data showed that carbonaceous aerosols from Mexico City have much lower biogenic signature than the smaller city of Cuernavaca.
Resumo:
An investigation was undertaken to determine the chemical characterization of inhalable particulate matter in the Houston area, with special emphasis on source identification and apportionment of outdoor and indoor atmospheric aerosols using multivariate statistical analyses.^ Fine (<2.5 (mu)m) particle aerosol samples were collected by means of dichotomous samplers at two fixed site (Clear Lake and Sunnyside) ambient monitoring stations and one mobile monitoring van in the Houston area during June-October 1981 as part of the Houston Asthma Study. The mobile van allowed particulate sampling to take place both inside and outside of twelve homes.^ The samples collected for 12-h sampling on a 7 AM-7 PM and 7 PM-7 AM (CDT) schedule were analyzed for mass, trace elements, and two anions. Mass was determined gravimetrically. An energy-dispersive X-ray fluorescence (XRF) spectrometer was used for determination of elemental composition. Ion chromatography (IC) was used to determine sulfate and nitrate.^ Average chemical compositions of fine aerosol at each site were presented. Sulfate was found to be the largest single component in the fine fraction mass, comprising approximately 30% of the fine mass outdoors and 12% indoors, respectively.^ Principal components analysis (PCA) was applied to identify sources of aerosols and to assess the role of meteorological factors on the variation in particulate samples. The results suggested that meteorological parameters were not associated with sources of aerosol samples collected at these Houston sites.^ Source factor contributions to fine mass were calculated using a combination of PCA and stepwise multivariate regression analysis. It was found that much of the total fine mass was apparently contributed by sulfate-related aerosols. The average contributions to the fine mass coming from the sulfate-related aerosols were 56% of the Houston outdoor ambient fine particulate matter and 26% of the indoor fine particulate matter.^ Characterization of indoor aerosol in residential environments was compared with the results for outdoor aerosols. It was suggested that much of the indoor aerosol may be due to outdoor sources, but there may be important contributions from common indoor sources in the home environment such as smoking and gas cooking. ^
Resumo:
Modeling is an essential tool for the development of atmospheric emission abatement measures and air quality plans. Most often these plans are related to urban environments with high emission density and population exposure. However, air quality modeling in urban areas is a rather challenging task. As environmental standards become more stringent (e.g. European Directive 2008/50/EC), more reliable and sophisticated modeling tools are needed to simulate measures and plans that may effectively tackle air quality exceedances, common in large urban areas across Europe, particularly for NO2. This also implies that emission inventories must satisfy a number of conditions such as consistency across the spatial scales involved in the analysis, consistency with the emission inventories used for regulatory purposes and versatility to match the requirements of different air quality and emission projection models. This study reports the modeling activities carried out in Madrid (Spain) highlighting the atmospheric emission inventory development and preparation as an illustrative example of the combination of models and data needed to develop a consistent air quality plan at urban level. These included a series of source apportionment studies to define contributions from the international, national, regional and local sources in order to understand to what extent local authorities can enforce meaningful abatement measures. Moreover, source apportionment studies were conducted in order to define contributions from different sectors and to understand the maximum feasible air quality improvement that can be achieved by reducing emissions from those sectors, thus targeting emission reduction policies to the most relevant activities. Finally, an emission scenario reflecting the effect of such policies was developed and the associated air quality was modeled.
Resumo:
The present investigation addresse the influence of laser welding process-ing parameters used for joining dis-similar metals (ferritic to austenitic steel), on the induced residual stress field. Welding was performed on a Nd:YAG laser DY033 (3300 W) in a continuous wave (CW), keyhole mode. The base metals (BM) employed in this study are AISI 1010 carbon steel (CS) and AISI 304L austenitic stainless steel (SS). Pairs of dissimilar plates of 200 mm x 45 mm x 3 mm were butt joined by laser welding. Different sets of parameters were used to engineer the base metals apportionment at joint formation, namely distinct dilution rates. Residual strain scanning, carried out by neutron diffraction was used to assess the joints. Through-thickness residual stress maps were determined for the laser welded samples of dis-similar steels using high spatial reso-lution. As a result, an appropriate set of processing parameters, able to mi-nimize the local tensile residual stress associated to the welding process, was found.
Resumo:
As environmental standards become more stringent (e.g. European Directive 2008/50/EC), more reliable and sophisticated modeling tools are needed to simulate measures and plans that may effectively tackle air quality exceedances, common in large cities across Europe, particularly for NO2. Modeling air quality in urban areas is rather complex since observed concentration values are a consequence of the interaction of multiple sources and processes that involve a wide range of spatial and temporal scales. Besides a consistent and robust multi-scale modeling system, comprehensive and flexible emission inventories are needed. This paper discusses the application of the WRF-SMOKE-CMAQ system to the Madrid city (Spain) to assess the contribution of the main emitting sectors in the region. A detailed emission inventory was compiled for this purpose. This inventory relies on bottom-up methods for the most important sources. It is coupled with the regional traffic model and it makes use of an extensive database of industrial, commercial and residential combustion plants. Less relevant sources are downscaled from national or regional inventories. This paper reports the methodology and main results of the source apportionment study performed to understand the origin of pollution (main sectors and geographical areas) and define clear targets for the abatement strategy. Finally the structure of the air quality monitoring is analyzed and discussed to identify options to improve the monitoring strategy not only in the Madrid city but the whole metropolitan area.
Resumo:
The past two decades have greatly improved our knowledge of vertebrate skeletal morphogenesis. It is now clear that bony morphology lacks individual descriptive specification and instead results from an interplay between positional information assigned during early limb bud deployment and its “execution” by highly conserved cellular response programs of derived connective tissue cells (e.g., chondroblasts and osteoblasts). Selection must therefore act on positional information and its apportionment, rather than on more individuated aspects of presumptive adult morphology. We suggest a trait classification system that can help integrate these findings in both functional and phylogenetic examinations of fossil mammals and provide examples from the human fossil record.
Resumo:
Current arrangements for multi-national company taxation in EU are plagued by severe conceptual and administrative problems, leading to high compliance costs, considerable uncertainty and ample room for abuse. Integration is amplifying these difficulties. There are two possible approaches in designing an efficient trans-border corporate tax system for the European Union. The first is to consolidate the EU-wide operations of MNEs, using an agreed common base as the reference variable, and then to apportion this total tax base using some presumptive indicators of activity in each tax jurisdiction – hence, implicitly, of the likely benefits stemming from each location. The apportionment formula should respect requisites of neutrality between productive factors and forms of corporate financing. A radically different approach is also available that offers considerable advantages in terms of efficiency, simplicity and decentralisation, including full administrative autonomy of national tax authorities. It entails abandoning corporate income as the relevant tax base and taxing at a moderate rate some agreed measure of business activity such as company value added, sales or employment. These are the variables usually considered in formula apportionment, but they would apply directly without having first to go through the complications of EU-wide consolidation based on a common-base definition. Reference to a broad base, with no exemptions or deductions, would allow to set low statutory rates.
Resumo:
In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ngm-3 and black carbon (BC) up to 17 μgm-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf/ was the dominant fraction of PM1, with the primary (POCnf/ and secondary (SOCnf/ fractions contributing 26–44% and 13–23% to the total carbon (TC), respectively. 5–8% of the TC had a primary fossil origin (POCf/, whereas the contribution of fossil secondary organic carbon (SOCf/ was 4–13 %. Nonfossil EC (ECnf/ and fossil EC (ECf/ ranged from 13–24 and 7–13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.
Resumo:
Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6–C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6–C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.