763 resultados para Apple pomance
Resumo:
Carbon fluxes and allocation pattern, and their relationship with the main environmental and physiological parameters, were studied in an apple orchard for one year (2010). I combined three widely used methods: eddy covariance, soil respiration and biometric measurements, and I applied a measurement protocol allowing a cross-check between C fluxes estimated using different methods. I attributed NPP components to standing biomass increment, detritus cycle and lateral export. The influence of environmental and physiological parameters on NEE, GPP and Reco was analyzed with a multiple regression model approach. I found that both NEP and GPP of the apple orchard were of similar magnitude to those of forests growing in similar climate conditions, while large differences occurred in the allocation pattern and in the fate of produced biomass. Apple production accounted for 49% of annual NPP, organic material (leaves, fine root litter, pruned wood and early fruit drop) contributing to detritus cycle was 46%, and only 5% went to standing biomass increment. The carbon use efficiency (CUE), with an annual average of 0.68 ± 0.10, was higher than the previously suggested constant values of 0.47-0.50. Light and leaf area index had the strongest influence on both NEE and GPP. On a diurnal basis, NEE and GPP reached their peak approximately at noon, while they appeared to be limited by high values of VPD and air temperature in the afternoon. The proposed models can be used to explain and simulate current relations between carbon fluxes and environmental parameters at daily and yearly time scale. On average, the annual NEP balanced the carbon annually exported with the harvested apples. These data support the hypothesis of a minimal or null impact of the apple orchard ecosystem on net C emission to the atmosphere.
Resumo:
The goal of many plant scientists’ research is to explain natural phenotypic variation in term of simple changes in DNA sequence. DNA-based molecular markers are extensively used for the construction of genome-wide molecular maps and to perform genetic analysis for simple and complex traits. The PhD thesis was divided into two main research lines according to the different approaches adopted. The first research line is to analyze the genetic diversity in an Italian apple germplasm collection for the identification of markers tightly linked to targeted genes by an association genetic method. This made it possible to identify synomym and homonym accessions and triploids. The fruit red skin color trait has been used to test the reliability of the genetic approaches in this species. The second line is related to the development of molecular markers closely linked to the Rvi13 and Rvi5 scab resistance genes, previously mapped on apple’s chromosome 10 and 17 respectively by using the traditional linkage mapping method. Both region have been fine-mapped with various type of markers that could be used for marker-assisted selection in future breeding programs and to isolate the two resistance genes.
Resumo:
The introduction of dwarfed rootstocks in apple crop has led to a new concept of intensive planting systems with the aim of producing early high yield and with returns of the initial high investment. Although yield is an important aspect to the grower, the consumer has become demanding regards fruit quality and is generally attracted by appearance. To fulfil the consumer’s expectations the grower may need to choose a proper training system along with an ideal pruning technique, which ensure a good light distribution in different parts of the canopy and a marketable fruit quality in terms of size and skin colour. Although these aspects are important, these fruits might not reach the proper ripening stage within the canopy because they are often heterogeneous. To describe the variability present in a tree, a software (PlantToon®), was used to recreate the tree architecture in 3D in the two training systems. The ripening stage of each of the fruits was determined using a non-destructive device (DA-Meter), thus allowing to estimate the fruit ripening variability. This study deals with some of the main parameters that can influence fruit quality and ripening stage within the canopy and orchard management techniques that can ameliorate a ripening fruit homogeneity. Significant differences in fruit quality were found within the canopies due to their position, flowering time and bud wood age. Bi-axis appeared to be suitable for high density planting, even though the fruit quality traits resulted often similar to those obtained with a Slender Spindle, suggesting similar fruit light availability within the canopies. Crop load confirmed to be an important factor that influenced fruit quality as much as the interesting innovative pruning method “Click”, in intensive planting systems.
Resumo:
The ripening stage of apple fruits at harvest is the main factor influencing fruit quality during the cold storage period that lasts several months and give rise to physiological disorders in fruits of susceptible cultivars. In particular, superficial scald is connected to α-farnesene oxidation, leading to fruit browning. Therefore, the assessment of the optimal ripening stage at harvest is considered to be crucial to control the overall quality, the length of storage life and the scald incidence. However, the maturity indexes traditionally used in the horticultural practice do not strictly correlate with fruit maturity, and do not account for the variability occurring in the field. Hence, the present work focused on the determination of apple fruit ripening with the use of an innovative, non-destructive device, the DA-meter. The study was conducted on ‘Granny Smith’ and ‘Pink Lady’ cultivars, which differ in scald susceptibility. Pre- and post- harvest ripening behavior of the fruits was studied, and the influence of ripening stage and treatments with 1-MCP were evaluated in relation to scald development and related metabolites. IAD was shown to be a reliable indicator of apple ripening, allowing cultivar-specific predictions of the optimal harvest time in different growing seasons. IAD may also be employed to segregate apple fruits in maturity classes, requiring different storage conditions to control flesh firmness reduction and scald incidence. Moreover, 1-MCP application is extremely effective in reducing superficial scald, and its effect is influenced by fruit ripening stage reached at harvest. However, the relation between ethylene and α-farnesene was not entirely elucidated. Thus, ethylene can be involved in other oxidative processes associated with scald besides α-farnesene regulation.
Resumo:
Apple latent infection caused by Neofabraea alba: host-pathogen interaction and disease management Bull’s eye rot (BER) caused by Neofabraea alba is one of the most frequent and damaging latent infection occurring in stored pome fruits worldwide. Fruit infection occurs in the orchard, but disease symptoms appear only 3 months after harvest, during refrigerated storage. In Italy BER is particularly serious for late harvest apple cultivar as ‘Pink Lady™’. The purposes of this thesis were: i) Evaluate the influence of ‘Pink Lady™’ apple primary metabolites in N. alba quiescence ii) Evaluate the influence of pH in five different apple cultivars on BER susceptibility iii) To find out not chemical method to control N. alba infection iv) Identify some fungal volatile compounds in order to use them as N. alba infections markers. Results regarding the role of primary metabolites showed that chlorogenic, quinic and malic acid inhibit N. alba development. The study based on the evaluation of cultivar susceptibility, showed that Granny Smith was the most resistant apple cultivar among the varieties analyzed. Moreover, Granny Smith showed the lowest pH value from harvest until the end of storage, supporting the thesis that ambient pH could be involved in the interaction between N. alba and apple. In order to find out new technologies able to improve lenticel rot management, the application of a non-destructive device for the determination of chlorophyll content was applied. Results showed that fruit with higher chlorophyll content are less susceptible to BER, and molecular analyses comforted this result. Fruits with higher chlorophyll content showed up-regulation of PGIP and HCT, genes involved in plant defence. Through the application of PTR-MS and SPME GC-MS, 25 volatile organic compounds emitted by N. alba were identified. Among them, 16 molecules were identified as potential biomarkers.
Resumo:
The columnar growth habit of apple is interesting from an economic point of view as the pillar-like trees require little space and labor. Genetic engineering could be used to speed up breeding for columnar trees with high fruit quality and disease resistance. For this purpose, this study dealt with the molecular causes of this interesting phenotype. The original bud sport mutation that led to the columnar growth habit was found to be a novel nested insertion of a Gypsy-44 LTR retrotransposon on chromosome 10 at 18.79 Mb. This subsequently causes tissue-specific differential expression of nearby downstream genes, particularly of a gene encoding a 2OG-Fe(II) oxygenase of unknown function (dmr6-like) that is strongly upregulated in developing aerial tissues of columnar trees. The tissue-specificity of the differential expression suggests involvement of cis-regulatory regions and/or tissue-specific epigenetic markers whose influence on gene expression is altered due to the retrotransposon insertion. This eventually leads to changes in genes associated with stress and defense reactions, cell wall and cell membrane metabolism as well as phytohormone biosynthesis and signaling, which act together to cause the typical phenotype characteristics of columnar trees such as short internodes and the absence of long lateral branches. In future, transformation experiments introducing Gypsy-44 into non-columnar varieties or excising Gypsy-44 from columnar varieties would provide proof for our hypotheses. However, since site-specific transformation of a nested retrotransposon is a (too) ambitious objective, silencing of the Gypsy-44 transcripts or the nearby genes would also provide helpful clues.
Resumo:
A laboratory model system with the rosy apple aphid (Dysaphis plantaginea Pass.) on apple seedlings was developed to study the effects of homeopathic preparations on this apple pest. The assessment included the substance Lycopodium clavatum and a nosode of the rosy apple aphid. Each preparation was applied on the substrate surface as aqueous solution of granules (6c, 15c, or 30c). Controls were aqueous solutions of placebo granules or pure water. In eight independent, randomized, and blinded experiments under standardized conditions in growth chambers, the development of aphids on treated and untreated apple seedlings was observed over 17 days, each. Six experiments were determined to assess the effects of a strict therapeutic treatment; two experiments were designed to determine the effects of a combined preventative and therapeutic treatment. After application of the preparations, the number of juvenile offspring and the damage on apple seedlings were assessed after 7 and 17 days, respectively. In addition, after 17 days, the seedling weight was measured. In the final evaluation of the six strictly therapeutic trials after 17 days, the number of juvenile offspring was reduced after application of L. clavatum 15c (-17%, p = 0.002) and nosode 6c (-14%, p = 0.02) compared to the pure water control. No significant effects were observed for leaf damage or fresh weight for any application. In the two experiments with combined preventative and therapeutic treatment, no significant effects were observed in any measured parameter. Homeopathic remedies may be effective in plant-pest systems. The magnitude of observed effects seems to be larger than in models with healthy plants, which renders plant-pest systems promising candidates for homeopathic basic research. For successful application in agriculture, however, the effect is not yet sufficient. This calls for further optimization concerning homeopathic remedy selection, potency level, dosage, and application routes.
Resumo:
(1)H HR-MAS NMR spectroscopy was applied to apple tissue samples deriving from 3 different cultivars. The NMR data were statistically evaluated by analysis of variance (ANOVA), principal component analysis (PCA), and partial least-squares-discriminant analysis (PLS-DA). The intra-apple variability of the compounds was found to be significantly lower than the inter-apple variability within one cultivar. A clear separation of the three different apple cultivars could be obtained by multivariate analysis. Direct comparison of the NMR spectra obtained from apple tissue (with HR-MAS) and juice (with liquid-state HR NMR) showed distinct differences in some metabolites, which are probably due to changes induced by juice preparation. This preliminary study demonstrates the feasibility of (1)H HR-MAS NMR in combination with multivariate analysis as a tool for future chemometric studies applied to intact fruit tissues, e.g. for investigating compositional changes due to physiological disorders, specific growth or storage conditions.
Resumo:
Patients with birch pollen allergy (major allergen: Bet v 1) have often an associated oral allergy syndrome (OAS) to apple, which contains the cross-reactive allergen Mal d 1. As successful birch pollen immunotherapy does not consistently improve apple related OAS symptoms, we evaluated whether regular apple consumption has an effect on OAS and immune parameters of Mal d 1 or Bet v 1 allergy.
Resumo:
In a period of increasing concern about food safety, food poisoning outbreaks where unpasterurized apple cider or apple juice was found contaminated with Escherichia coli 0157:H7 reinforces the need for using the best technologies in apple cider production. Most apple cider is sold as an unpasteurized raw product. Because of their acidity, it was believed that juice products do not usually contain microorganisms such as E. coli 0157:H7, Salmonella, and Crytosporidium. Yet all of these foodborne pathogens are capable of being transmitted in unpasteurized juices. It is known that these pathogens can survive for several weeks in a variety of acidic juices. Although heat pasteurization is probably the best method to eliminate these pathogens, it is not the most desirable method as it changes sensory properties and also is very costly for small to mid-sized apple cider processors. Pasteurization of apple cider with Ultraviolet Irradiation (UV) is a potential alternative to heat pasteurization. Germicidal W irradiation is effective in inactivating microorganisms without producing undesirable by-products and changing sensory properties. Unpasteurized raw apple cider from a small local processor was purchased for this study. The effects of physical parameters, exposure time and dosage on the W treatment efficacy were examined as well as the effects of the UV light on apple cider quality. W light with principal energy at a wavelength of 254.7 nm, was effective in reducing bacteria (E .coli, ATCC 25922) inoculated apple cider. The W dosage absorbed by the apple cider was mathematically calculated. A radiation dose of 8,777 μW-s/cm2 reduced bacteria an average of 2.20 logs and in multiple passes, the FDA mandated 5-log reduction was achieved. Sensory analysis showed there was no significant difference between the W treated and non-treated cider. Experiments with W treated apple cider indicated a significant (p < 0.01) extension of product shelf life through inhibition of yeast and mold growth. The extension of the researched performed is applicable to other fruit juice processing operations.
Resumo:
Sooty blotch and flyspeck (SBFS) is a mid- to late-season disease of apple. SBFS fungi show up as dark smudges and clusters of black dots on the fruit surface. Since blemished fruit are downgraded, crop losses can exceed 90 percent of the fresh market value.
Resumo:
To evaluate the adaptability and performance of new and promising apple rootstocks in the dwarfing size-control category, a NC-140 regional rootstock trial was established in 2010 at 12 sites in the United States (CO, IA, IL, IN, MA, MI, MN, NJ, NY, OH, UT, WI), two sites in Canada (BC, NS), and one site in Mexico (CHIH) with Honeycrisp serving as the test cultivar. The Iowa planting, located at the ISU Horticulture Research Station, includes 31 rootstocks with new selections from the Cornell-Geneva breeding program (G, CG.), Russia (Bud), Germany (PiAu), and Japan (Supp), with M.26, M.9 Pajam 2, and M.9 T337 serving as industry standards. Tissue cultured propagated (TC) rootstocks of G.41, G.202, and G.935 were included for comparison with normal (N) stool bed propagated rootstocks. This report summarizes the tree-growth characteristics of the Iowa planting during the 2011 growing season.
Resumo:
Fil: Marano, María Gabriela. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.