977 resultados para Appearance-based Navigation
Resumo:
Zooplankton community structure (composition, diversity, dynamics and trophic relationships) of Mediterranian marshes, has been analysed by means of a size based approach. In temporary basins the shape of the biomass-size spectra is related to the hydrological cycle. Linear shape spectra are more frequent in flooding situations when nutrient input causes population growth of small-sized organisms, more than compensating for the effect of competitive interactions. During confinement conditions the scarcity of food would decrease zooplankton growth and increase intra- and interspecific interactions between zooplankton organisms which favour the greatest sizes thus leading to the appearance of curved shape spectra. Temporary and permanent basins have similar taxonomic composition but the latter have higher species diversity, a more simplified temporal pattern and a size distribution dominated mainly by smaller sizes. In permanents basins zooplankton growth is not only conditioned by the availability of resources but by the variable predation of planktivorous fish, so that the temporal variability of the spectra may also be a result of temporal differences in fish predation. Size diversity seems to be a better indicator of the degree of this community structure than species diversity. The tendency of size diversity to increase during succession makes it useful to discriminate between different succession stages, fact that is not achieved by analysing only species diversity since it is low both under large and frequent or small and rare disturbances. Amino acid composition differences found among stages of copepod species indicate a gradual change in diet during the life cycle of these copepods, which provide evidence of food niche partitioning during ontogeny, whereas Daphnia species show a relatively constant amino acid composition. There is a relationship between the degree of trophic niche overlap among stages of the different species and nutrient concentration. Copepods, which have low trophic niche overlap among stages are dominant in food-limited environments, probably because trophic niche partitioning during development allow them to reduce intraspecific competition between adults, juveniles and nauplii. Daphnia species are only dominant in water bodies or periods with high productivity, probably due to the high trophic niche overlap between juveniles and adults. These findings suggest that, in addition to the effect of interspecific competition, predation and abiotic factors, the intraspecific competition might play also an important role in structuring zooplankton assemblages.
Resumo:
La percepció per visió es millorada quan es pot gaudir d'un camp de visió ampli. Aquesta tesi es concentra en la percepció visual de la profunditat amb l'ajuda de càmeres omnidireccionals. La percepció 3D s'obté generalment en la visió per computadora utilitzant configuracions estèreo amb el desavantatge del cost computacional elevat a l'hora de buscar els elements visuals comuns entre les imatges. La solució que ofereix aquesta tesi és l'ús de la llum estructurada per resoldre el problema de relacionar les correspondències. S'ha realitzat un estudi sobre els sistemes de visió omnidireccional. S'han avaluat vàries configuracions estèreo i s'ha escollit la millor. Els paràmetres del model són difícils de mesurar directament i, en conseqüència, s'ha desenvolupat una sèrie de mètodes de calibració. Els resultats obtinguts són prometedors i demostren que el sensor pot ésser utilitzat en aplicacions per a la percepció de la profunditat com serien el modelatge de l'escena, la inspecció de canonades, navegació de robots, etc.
Resumo:
Tradicionalment, la reproducció del mon real se'ns ha mostrat a traves d'imatges planes. Aquestes imatges se solien materialitzar mitjançant pintures sobre tela o be amb dibuixos. Avui, per sort, encara podem veure pintures fetes a ma, tot i que la majoria d'imatges s'adquireixen mitjançant càmeres, i es mostren directament a una audiència, com en el cinema, la televisió o exposicions de fotografies, o be son processades per un sistema computeritzat per tal d'obtenir un resultat en particular. Aquests processaments s'apliquen en camps com en el control de qualitat industrial o be en la recerca mes puntera en intel·ligència artificial. Aplicant algorismes de processament de nivell mitja es poden obtenir imatges 3D a partir d'imatges 2D, utilitzant tècniques ben conegudes anomenades Shape From X, on X es el mètode per obtenir la tercera dimensió, i varia en funció de la tècnica que s'utilitza a tal nalitat. Tot i que l'evolució cap a la càmera 3D va començar en els 90, cal que les tècniques per obtenir les formes tridimensionals siguin mes i mes acurades. Les aplicacions dels escàners 3D han augmentat considerablement en els darrers anys, especialment en camps com el lleure, diagnosi/cirurgia assistida, robòtica, etc. Una de les tècniques mes utilitzades per obtenir informació 3D d'una escena, es la triangulació, i mes concretament, la utilització d'escàners laser tridimensionals. Des de la seva aparició formal en publicacions científiques al 1971 [SS71], hi ha hagut contribucions per solucionar problemes inherents com ara la disminució d'oclusions, millora de la precisió, velocitat d'adquisició, descripció de la forma, etc. Tots i cadascun dels mètodes per obtenir punts 3D d'una escena te associat un procés de calibració, i aquest procés juga un paper decisiu en el rendiment d'un dispositiu d'adquisició tridimensional. La nalitat d'aquesta tesi es la d'abordar el problema de l'adquisició de forma 3D, des d'un punt de vista total, reportant un estat de l'art sobre escàners laser basats en triangulació, provant el funcionament i rendiment de diferents sistemes, i fent aportacions per millorar la precisió en la detecció del feix laser, especialment en condicions adverses, i solucionant el problema de la calibració a partir de mètodes geomètrics projectius.
Resumo:
Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach
Resumo:
The geospace environment is controlled largely by events on the Sun, such as solar flares and coronal mass ejections, which generate significant geomagnetic and upper atmospheric disturbances. The study of this Sun-Earth system, which has become known as space weather, has both intrinsic scientific interest and practical applications. Adverse conditions in space can damage satellites and disrupt communications, navigation, and electric power grids, as well as endanger astronauts. The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the U.S. National Science Foundation (see http://www.bu.edu/cism/), is developing a suite of integrated physics-based computer models that describe the space environment from the Sun to the Earth for use in both research and operations [Hughes and Hudson, 2004, p. 1241]. To further this mission, advanced education and training programs sponsored by CISM encourage students to view space weather as a system that encompasses the Sun, the solar wind, the magnetosphere, and the ionosphere/thermosphere. This holds especially true for participants in the CISM space weather summer school [Simpson, 2004].
Resumo:
The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.
Resumo:
A new autonomous ship collision free (ASCF) trajectory navigation and control system has been introduced with a new recursive navigation algorithm based on analytic geometry and convex set theory for ship collision free guidance. The underlying assumption is that the geometric information of ship environment is available in the form of a polygon shaped free space, which may be easily generated from a 2D image or plots relating to physical hazards or other constraints such as collision avoidance regulations. The navigation command is given as a heading command sequence based on generating a way point which falls within a small neighborhood of the current position, and the sequence of the way points along the trajectory are guaranteed to lie within a bounded obstacle free region using convex set theory. A neurofuzzy network predictor which in practice uses only observed input/output data generated by on board sensors or external sensors (or a sensor fusion algorithm), based on using rudder deflection angle for the control of ship heading angle, is utilised in the simulation of an ESSO 190000 dwt tanker model to demonstrate the effectiveness of the system.
Resumo:
A vision system for recognizing rigid and articulated three-dimensional objects in two-dimensional images is described. Geometrical models are extracted from a commercial computer aided design package. The models are then augmented with appearance and functional information which improves the system's hypothesis generation, hypothesis verification, and pose refinement. Significant advantages over existing CAD-based vision systems, which utilize only information available in the CAD system, are realized. Examples show the system recognizing, locating, and tracking a variety of objects in a robot work-cell and in natural scenes.
Resumo:
Human-like computer interaction systems requires far more than just simple speech input/output. Such a system should communicate with the user verbally, using a conversational style language. It should be aware of its surroundings and use this context for any decisions it makes. As a synthetic character, it should have a computer generated human-like appearance. This, in turn, should be used to convey emotions, expressions and gestures. Finally, and perhaps most important of all, the system should interact with the user in real time, in a fluent and believable manner.
Resumo:
It is often assumed that humans generate a 3D reconstruction of the environment, either in egocentric or world-based coordinates, but the steps involved are unknown. Here, we propose two reconstruction-based models, evaluated using data from two tasks in immersive virtual reality. We model the observer’s prediction of landmark location based on standard photogrammetric methods and then combine location predictions to compute likelihood maps of navigation behaviour. In one model, each scene point is treated independently in the reconstruction; in the other, the pertinent variable is the spatial relationship between pairs of points. Participants viewed a simple environment from one location, were transported (virtually) to another part of the scene and were asked to navigate back. Error distributions varied substantially with changes in scene layout; we compared these directly with the likelihood maps to quantify the success of the models. We also measured error distributions when participants manipulated the location of a landmark to match the preceding interval, providing a direct test of the landmark-location stage of the navigation models. Models such as this, which start with scenes and end with a probabilistic prediction of behaviour, are likely to be increasingly useful for understanding 3D vision.
Resumo:
The current state of the art in the planning and coordination of autonomous vehicles is based upon the presence of speed lanes. In a traffic scenario where there is a large diversity between vehicles the removal of speed lanes can generate a significantly higher traffic bandwidth. Vehicle navigation in such unorganized traffic is considered. An evolutionary based trajectory planning technique has the advantages of making driving efficient and safe, however it also has to surpass the hurdle of computational cost. In this paper, we propose a real time genetic algorithm with Bezier curves for trajectory planning. The main contribution is the integration of vehicle following and overtaking behaviour for general traffic as heuristics for the coordination between vehicles. The resultant coordination strategy is fast and near-optimal. As the vehicles move, uncertainties may arise which are constantly adapted to, and may even lead to either the cancellation of an overtaking procedure or the initiation of one. Higher level planning is performed by Dijkstra's algorithm which indicates the route to be followed by the vehicle in a road network. Re-planning is carried out when a road blockage or obstacle is detected. Experimental results confirm the success of the algorithm subject to optimal high and low-level planning, re-planning and overtaking.
Resumo:
A method for estimating both the Alfvén speed and the field-aligned flow of the magnetosheath at the magnetopause reconnection site is presented. The method employs low-altitude cusp ion observations and requires the identification of a feature in the cusp ion spectra near the low-energy cutoff which will often be present for a low-latitude dayside reconnection site. The appearance of these features in data of limited temporal, energy, and pitch angle resolution is illustrated by using model calculations of cusp ion distribution functions. These are based on the theory of ion acceleration at the dayside magnetopause and allow for the effects on the spectrum of flight times of ions precipitating down newly opened field lines. In addition, the variation of the reconnection rate can be evaluated, and comparison with ground-based observations of the corresponding sequence of transient events allows the field-aligned distance from the ionosphere to the reconnection site to be estimated.
Resumo:
A dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0–8.5. The hydrogel with a gelator concentration of 0.45% (w/v) at pH 7.46 (physiological pH) provides a very good platform to study dynamic changes within a supramolecular framework as it exhibits remarkable change in its appearance with time. Interestingly, the first formed transparent hydrogel gradually transforms into a turbid gel within 2 days. These two forms of the hydrogel have been thoroughly investigated by using small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, FT-IR and rheometric analyses. The SAXS and low angle PXRD studies substantiate different packing arrangements for the gelator molecules for these two different gel states (the freshly prepared and the aged hydrogel). Moreover, rheological studies of these two gels reveal that the aged gel is stiffer than the freshly prepared gel.
Resumo:
Probabilistic hydro-meteorological forecasts have over the last decades been used more frequently to communicate forecastuncertainty. This uncertainty is twofold, as it constitutes both an added value and a challenge for the forecaster and the user of the forecasts. Many authors have demonstrated the added (economic) value of probabilistic over deterministic forecasts across the water sector (e.g. flood protection, hydroelectric power management and navigation). However, the richness of the information is also a source of challenges for operational uses, due partially to the difficulty to transform the probability of occurrence of an event into a binary decision. This paper presents the results of a risk-based decision-making game on the topic of flood protection mitigation, called “How much are you prepared to pay for a forecast?”. The game was played at several workshops in 2015, which were attended by operational forecasters and academics working in the field of hydrometeorology. The aim of this game was to better understand the role of probabilistic forecasts in decision-making processes and their perceived value by decision-makers. Based on the participants’ willingness-to-pay for a forecast, the results of the game show that the value (or the usefulness) of a forecast depends on several factors, including the way users perceive the quality of their forecasts and link it to the perception of their own performances as decision-makers.
Resumo:
This project involves the design and implementation of a global electronic tracking system intended for use by trans-oceanic vessels, using the technology of the U.S. Government's Global Positioning System (GPS) and a wireless connection to a networked computer. Traditional navigation skills are being replaced with highly accurate electronics. GPS receivers, computers, and mobile communication are becoming common among both recreational and commercial boaters. With computers and advanced communication available throughout the maritime world, information can be shared instantaneously around the globe. This ability to monitor one's whereabouts from afar can provide an increased level of safety and efficiency. Current navigation software seldom includes the capability of providing upto-the-minute navigation information for remote display. Remote access to this data will allow boat owners to track the progress of their boats, land-based organizations to monitor weather patterns and suggest course changes, and school groups to track the progress of a vessel and learn about navigation and science. The software developed in this project allows navigation information from a vessel to be remotely transmitted to a land-based server, for interpretation and deployment to remote users over the Internet. This differs from current software in that it allows the tracking of one vessel by multiple users and provides a means for two-way text messaging between users and the vesseI. Beyond the coastal coverage provided by cellular telephones, mobile communication is advancing rapidly. Current tools such as satellite telephones and single-sideband radio enable worldwide communications, including the ability to connect to the Internet. If current trends continue, portable global communication will be available at a reasonable price and Internet connections on boats will become more common.