956 resultados para Apparent photosynthesis
Resumo:
A mechanistic model is developed to present the photosynthetic response of phytoplankton to irradiance at the physiological level. The model is operated on photosynthetic units (PSU), and each PSU is assumed to have two states: reactive and activated. Light absorption that drives a reactive PSU into the activated state results from the effective absorption of the PSU. Transitions between the two states are asymmetrical in rate. A PSU in the reactive state becomes activated much faster than it recovers from the activated state to the reactive one. The turnover time for an activated PSU to transit into the reactive one is defined by the turnover time of the electron transport chain. The present model yields a photosynthesis-irradiance curve (PE-curve) in a hyperbola, which is described by three physiological parameters: effective cross-section (sigma (PSII)), turnover time of electron transport chain (tau) and number of PSUs (N). The PE-curve has an initial slope of sigma (PSII) x N, a half-saturated irradiance of 1/(sigma (PSII)), and a maximal photosynthetic rate of Nlc at the saturated irradiance. The PE-curve from the present model is comparable to the empirical function based on the target theory described by the Poisson distribution. (C) 2001 Academic Press.
Resumo:
Our goal was to determine the effect of diets with different crude protein (CP) contents and metabolizable energy (W) levels on daily live-weight gain, apparent digestibility, and economic benefit of feedlot yaks on the Tibetan plateau during winter. Yaks were either 2- or 3-years old and randomly selected from the same herd. The 3-year-olds were placed into one of two experimental groups (A and B) and a control (CK1), and the two-year-olds were placed into one of three experimental groups (C, D and E) and a control (CK2) (N per group = 5). Yak in the control groups were allow graze freely, while those in the experimental groups yaks were fed diets higher in contains crude protein and metabolizable energy through a winter period inside a warming shed. Results indicated that live-weight gain of treatment groups was higher than their respective controls during experiment, and that daily live-weight gain of every 10 days among different treatments was significant difference (P < 0.05). In addition, apparent digestibility of different diets was linearly and positively related to feedlotting time, and feed conversion efficiency for A, C, D and E groups was quadratically related to feedlotting time (P < 0.01), however, feed conversion efficiency for B group was linearly and positively related to feedlotting time (P < 0.05). The economic benefit was 1.15 for A, 1.89 for B, 1.16 for C, 1.54 for D, and 4,52 for E. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We examined the CO2 exchange of a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau using a chamber system. CO2 efflux from the ecosystem was strongly dependence on soil surface temperature. The COZ efflux-temperature relationship was identical under both light and dark conditions, indicating that no photosynthesis could be detected under light conditions during the measurement period. The temperature sensitivity (Q(10)) of the COZ efflux showed a marked transition around -1.0 degrees C; Q(10) was 2.14 at soil surface temperatures above and equal to -1.0 degrees C but was 15.3 at temperatures below -1.0 degrees C. Our findings suggest that soil surface temperature was the major factor controlling winter COZ flux for the alpine meadow ecosystem and that freeze-thaw cycles at the soil surface layer play an important role in the temperature dependence of winter CO2 flux. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Experiments were conducted in an alpine Kobresia humilis meadow near Haibei Alpine Meadow Ecosystem Research Station (37degrees29'-37degrees45'N, 101degrees12'-101degrees33'E; altitude 3200 m). Effects of enhanced ultraviolet-B (UV-B) radiation on photosynthesis of the alpine plants of Saussurea superba and Gentiana straminea were investigated. Both species were exposed to a UV-B-BE density at 15.80 kJ m(-2) per day, simulating nearly 14% ozone (O-3) reduction during the plant growing season. Neither photosynthetic CO2 uptake rate nor photosynthetic O-2 evolution rate were decreased after a long period of enhanced UV-B radiation treatment. On the contrary, there was a tendency to increase of both parameters in both species. The photosynthetic pigments were also increased, when expressed on a leaf area basis. UV-B absorbing compounds, detected by the absorbance values at 300 mm, had a tendency to increase in both species after enhanced UV-B radiation. After long-term exposure of plants to enhanced UV-B radiation, leaf morphology was also affected. Leaf thickness in both S. superba and G. straminea were increased significantly (P < 0.001). This supports our hypothesis that the increase of leaf thickness in both species after long-term exposure of enhanced UV-B radiation could compensate for the photodestruction of photosynthetic pigments when light passes through the leaf. Therefore, photosynthesis is not reduced in either species when expressed on leaf area basis. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The Qinghai-Tibet Plateau is characterized by extremely high radiation, which may induce down-regulation of photosynthesis in plants living in this alpine ecosystem. To clarify whether photoinhibition occurs in the alpine environment and to discern its underlying mechanisms, we examined photosynthetic gas exchange and fluorescence emission in response to the changes in photosynthetic photon flux density (PPFD) and leaf temperature under natural regimes for two herbaceous species: prostrate Saussurea superba and erect-leaved Saussurea katochaete from altitude 3250 m on the Qinghai-Tibet Plateau. S. superba intercepted a higher maximum PPFD and experienced much higher leaf temperature than the erect-leaved S. katochaete. S. superba exhibited a much higher light saturation point for photosynthesis than S. katochaete. Under controlled conditions, the former species had higher CO2 uptake rates and neither species showed obvious photosynthetic down-regulation at high PPFD. Under natural environmental conditions, however, apparent photoinhibition, indicated by reduced electron transport rate (ETR), was evident at high PPFD for both species. After a night frost, the photochemistry of S. katochaete was depressed markedly in the early morning and recovered by mid-day. After a frost-free night, it was high in the morning and low at noon due to high radiation. S. superba did not respond to the night frost in terms of daytime photochemical pattern. In both species, photochemical depression was aggravated by high leaf temperature and the erect species was more sensitive to high temperature. This study suggests that the high radiation on the Qinghai-Tibet Plateau is likely to induce rapidly reversible photoinhibition, which is related closely to plant architecture. Photochemistry in the prostrate species seems able to tolerate higher PPFD, without obvious suppression, than the erect species. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This article describes further evidence for a new neural network theory of biological motion perception that is called a Motion Boundary Contour System. This theory clarifies why parallel streams Vl-> V2 and Vl-> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The Motion Boundary Contour System consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a Motion Oriented Contrast Filter, or MOC Filter, for preprocessing moving images; and a Cooperative-Competitive Feedback Loop, or CC Loop, for generating emergent boundary segmentations of the filtered signals. The present article uses the MOC Filter to explain a variety of classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed-up of motion velocity as interfiash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte's Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem, including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90°, whereas opposite directions differ by 180°, and why a cortical stream Vl -> V2 -> MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the Motion Boundary Contour System design.
Resumo:
This article describes further evidence for a new neural network theory of biological motion perception. The theory clarifies why parallel streams Vl --> V2, Vl --> MT, and Vl --> V2 --> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The theory suggests that the static form system (Static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-ofcontrast and insensitive to direction-of-motion, whereas the motion form system (Motion BCS) generates emergent boundary segmentations whose outputs are insensitive to directionof-contrast but sensitive to direction-of-motion. The theory is used to explain classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include beta motion; split motion; gamma motion and reverse-contrast gamma motion; delta motion; visual inertia; the transition from group motion to element motion in response to a Ternus display as the interstimulus interval (ISI) decreases; group motion in response to a reverse-contrast Ternus display even at short ISIs; speed-up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, ISI, and motion threshold known as Korte's Laws; dependence of motion strength on stimulus orientation and spatial frequency; short-range and long-range form-color interactions; and binocular interactions of flashes to different eyes.
Resumo:
Functional MRI (fMRI) can detect blood oxygenation level dependent (BOLD) hemodynamic responses secondary to neuronal activity. The most commonly used method for detecting fMRI signals is the gradient-echo echo-planar imaging (EPI) technique because of its sensitivity and speed. However, it is generally believed that a significant portion of these signals arises from large veins, with additional contribution from the capillaries and parenchyma. Early experiments using diffusion-weighted gradient-echo EPI have suggested that intra-voxel incoherent motion (IVIM) weighting inherent in the sequence can selectively attenuate contributions from different vessels based on the differences in the mobility of the blood within them. In the present study, we used similar approach to characterize the apparent diffusion coefficient (ADC) distribution within the activated areas of BOLD contrast. It is shown that the voxel values of the ADCs obtained from this technique can infer various vascular contributions to the BOLD signal.
Resumo:
To identify patients at increased risk of cardiovascular (CV) outcomes, apparent treatment-resistant hypertension (aTRH) is defined as having a blood pressure above goal despite the use of 3 or more antihypertensive therapies of different classes at maximally tolerated doses, ideally including a diuretic. Recent epidemiologic studies in selected populations estimated the prevalence of aTRH as 10% to 15% among patients with hypertension and that aTRH is associated with elevated risk of CV and renal outcomes. Additionally, aTRH and CKD are associated. Although the pathogenesis of aTRH is multifactorial, the kidney is believed to play a significant role. Increased volume expansion, aldosterone concentration, mineralocorticoid receptor activity, arterial stiffness, and sympathetic nervous system activity are central to the pathogenesis of aTRH and are targets of therapies. Although diuretics form the basis of therapy in aTRH, pathophysiologic and clinical data suggest an important role for aldosterone antagonism. Interventional techniques, such as renal denervation and carotid baroreceptor activation, modulate the sympathetic nervous system and are currently in phase III trials for the treatment of aTRH. These technologies are as yet unproven and have not been investigated in relationship to CV outcomes or in patients with CKD.
Resumo:
This is a briefing report on when the safety issues identified in a July 2008 report by Jülich should have become apparent In July 2008, the German Jülich nuclear research centre published a report entitled ‘A safety re-evaluation of the AVR pebble bed reactor operation and its consequences for future HTR concepts.’ It concluded: ‘pebble bed HTRs require additional safety related R&D effort and updating of safety analyses before construction.’
Resumo:
The results of experiments recorded by Bayne & Scullard (1977) confirmed earlier studies (Bayne, 1973) in describing a decline in the rate of oxygen uptake (Vo2) by Mytilus edulis during starvation, eventually reaching a steady-state value, called the standard rate of oxygen consumption. Earlier experiments had also shown that if such starved mussels were fed, oxygen uptake increased rapidly to a high level called the active rate of oxygen consumption (Thompson & Bayne, 1972; Bayne, Thompson & Widdows, 1973). Some of this increase in metabolic rate is undoubtedly due to an increased filtration rate that is stimulated by the presence of food (the ‘mechanical cost of feeding’ discussed by Bayne et al. 1976), and part is due to the ‘physiological costs of feeding’, which includes energy utilized in digestion and assimilation of the food, and energy that is lost during deamination and other catabolic processes that accompany digestion (Warren & Davis, 1967). Increases in metabolic rate associated with feeding have been called the specific dynamic action (SDA) of the ration (see Harper, 1971, for a discussion) or the apparent SDA (Beamish, 1974)5 and they have been related to aspects of protein metabolism (Krebs, 1964). This paper describes the results of some experiments designed to examine the relationships between SDA and ammonia excretion in Mytilus edulis L.