984 resultados para Antigen 5


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes a tumor-associated antigen, termed CML66, initially cloned from a chronic myelogenous leukemia (CML) cDNA expression library. CML66 encodes a 583-aa protein with a molecular mass of 66 kDa and no significant homology to other known genes. CML66 gene is localized to human chromosome 8q23, but the function of this gene is unknown. CML66 is expressed in leukemias and a variety of solid tumor cell lines. When examined by Northern blot, expression in normal tissues was restricted to testis and heart, and no expression was found in hematopoietic tissues. When examined by quantitative reverse transcription–PCR, expression in CML cells was 1.5-fold higher than in normal peripheral blood mononuclear cells. The presence of CML66-specific antibody in patient serum was confirmed by Western blot and the development of high titer IgG antibody specific for CML66 correlated with immune induced remission of CML in a patient who received infusion of normal donor lymphocytes for treatment of relapse. CML66 antibody also was found in sera from 18–38% of patients with lung cancer, melanoma, and prostate cancer. These findings suggest that CML66 may be immunogenic in a wide variety of malignancies and may be a target for antigen-specific immunotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fen1 or maturation factor 1 is a 5'-3' exonuclease essential for the degradation of the RNA primer-DNA junctions at the 5' ends of immature Okazaki fragments prior to their ligation into a continuous DNA strand. The gene is also necessary for repair of damaged DNA in yeast. We report that human proliferating-cell nuclear antigen (PCNA) associates with human Fen1 with a Kd of 60 nM and an apparent stoichiometry of three Fen1 molecules per PCNA trimer. The Fen1-PCNA association is seen in cell extracts without overexpression of either partner and is mediated by a basic region at the C terminus of Fen1. Therefore, the polymerase delta-PCNA-Fen1 complex has all the activities associated with prokaryotic DNA polymerases involved in replication: 5'-3' polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. Although p21, a regulatory protein induced by p53 in response to DNA damage, interacts with PCNA with a comparable Kd (10 nM) and a stoichiometry of three molecules of p21 per PCNA trimer, a p21-PCNA-Fen1 complex is not formed. This mutually exclusive interaction suggests that the conformation of a PCNA trimer switches such that it can either bind p21 or Fen1. Furthermore, overexpression of p21 can disrupt Fen1-PCNA interaction in vivo. Therefore, besides interfering with the processivity of polymerase delta-PCNA, p21 also uncouples Fen1 from the PCNA scaffold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selective production of monoclonal antibodies (mAbs) reacting with defined cell surface-expressed molecules is now readily accomplished with an immunological subtraction approach, surface-epitope masking (SEM). Using SEM, prostate carcinoma (Pro 1.5) mAbs have been developed that react with tumor-associated antigens expressed on human prostate cancer cell lines and patient-derived carcinomas. Screening a human LNCaP prostate cancer cDNA expression library with the Pro 1.5 mAb identifies a gene, prostate carcinoma tumor antigen-1 (PCTA-1). PCTA-1 encodes a secreted protein of approximately 35 kDa that shares approximately 40% sequence homology with the N-amino terminal region of members of the S-type galactose-binding lectin (galectin) gene family. Specific galectins are found on the surface of human and marine neoplastic cells and have been implicated in tumorigenesis and metastasis. Primer pairs within the 3' untranslated region of PCTA-1 and reverse transcription-PCR demonstrate selective expression of PCTA-1 by prostate carcinomas versus normal prostate and benign prostatic hypertrophy. These findings document the use of the SEM procedure for generating mAbs reacting with tumor-associated antigens expressed on human prostate cancers. The SEM-derived mAbs have been used for expression cloning the gene encoding this human tumor antigen. The approaches described in this paper, SEM combined with expression cloning, should prove of wide utility for developing immunological reagents specific for and identifying genes relevant to human cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology has been developed for the study of molecular recognition at the level of single events and for the localization of sites on biosurfaces, in combining force microscopy with molecular recognition by specific ligands. For this goal, a sensor was designed by covalently linking an antibody (anti-human serum albumin, polyclonal) via a flexible spacer to the tip of a force microscope. This sensor permitted detection of single antibody-antigen recognition events by force signals of unique shape with an unbinding force of 244 +/- 22 pN. Analysis revealed that observed unbinding forces originate from the dissociation of individual Fab fragments from a human serum albumin molecule. The two Fab fragments of the antibody were found to bind independently and with equal probability. The flexible linkage provided the antibody with a 6-nm dynamical reach for binding, rendering binding probability high, 0.5 for encounter times of 60 ms. This permitted fast and reliable detection of antigenic sites during lateral scans with a positional accuracy of 1.5 nm. It is indicated that this methodology has promise for characterizing rate constants and kinetics of molecular recognition complexes and for molecular mapping of biosurfaces such as membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis of the initial antigen-recognition step in the destruction of target cells by CD8+ cytolytic T lymphocytes (CTLs) shows that a relationship in the form of the law of mass action can be used to describe interactions between antigen-specific receptors on T cells (TCRs) and their natural ligands on target cells (peptide-major histocompatibility protein complexes, termed pepMHC complexes), even though these reactants are confined to their respective cell membranes. For a designated level of lysis and receptor affinities below about 5 X 10(6) M-1, the product of the required number of pepMHC complexes per target cell ("epitope density") and TCR affinity for pepMHC complexes is constant; therefore, over this range TCR affinities can be predicted from epitope densities (or vice versa). At higher receptor affinities ("affinity ceiling") the epitope density required for half-maximal lysis reaches a lower limit of less than 10 complexes per target cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A murine model for antigen-induced bronchial hyperreactivity (BHR) and airway eosinophilia, two hallmarks of asthma, was developed using ovalbumin-immunized mice, which produce large amounts of IgE (named BP2, "Bons Producteurs 2," for High Line of Selection 2). A single intranasal ovalbumin challenge failed to modify the bronchial responses, despite the intense eosinophil recruitment into the bronchoalveolar lavage fluid and airways. When mice were challenged twice a day for 2 days or once a day for 10 days, BHR in response to i.v. 5-hydroxytryptamine or to inhaled methacholine was induced in BP2 mice but not in BALB/c mice. Histological examination showed that eosinophils reached the respiratory epithelium after multiple ovalbumin challenges in BP2 mice but remained in the bronchial submucosa in BALB/c mice. Total IgE titers in serum were augmented significantly with immunization in both strains, but much more so in BP2 mice. Interleukin 5 (IL-5) titers in serum and bronchoalveolar lavage fluid of BP2 mice were augmented by the antigenic provocation, and a specific anti-IL5 neutralizing antibody suppressed altogether airway eosinophilia and BHR, indicating a participation of IL-5 in its development. Our results indicate that the recruitment of eosinophils to the airways alone does not induce BHR in mice and that the selective effect on BP2 mice is related to their increased IgE titers associated with antigen-driven eosinophil migration to the epithelium, following formation and secretion of IL-5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell migration in the central nervous system depends, in part, on receptors and extracellular matrix molecules that likewise support axonal outgrowth. We have investigated the influence of T61, a monoclonal antibody that has been shown to inhibit growth cone motility in vitro, on neuronal migration in the developing optic tectum. Intraventricular injections of antibody-producing hybridoma cells or ascites fluid were used to determine the action of this antibody in an in vivo environment. To document alterations in tectal layer formation, a combination of cell-nuclei staining and axonal immunolabeling methods was employed. In the presence of T61 antibody, cells normally destined for superficial layers accumulated in the ventricular zone instead, leading to a reduction of the cell-dense layer in the tectal plate. Experiments with 5-bromo-2'-deoxyuridine labeling followed by antibody staining confirmed that the nonmigrating cells remaining in the ventricular zone were postmitotic and had differentiated. The structure of radial glial cells, as judged by staining with a glia-specific antibody and the fluorescent tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), remained intact in these embryos. Our findings suggest that the T61 epitope is involved in a mechanism underlying axonal extension and neuronal migration, possibly by influencing the motility of the leading process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of CD8+ cytotoxic T lymphocytes (CTLs) is desirable for immunization against many diseases, and recombinant-synthetic peptide antigens are now favored agents to use. However, a major problem is how to induce CTLs, which requires a T1-type response to such synthetic antigens. We report that T1-type (generating high CTL, low antibody) or T2-type (the reciprocal) responses can be induced by conjugation of the antigen to the carbohydrate polymer mannan: T1 responses are selected by using oxidizing conditions; T2 responses are selected by using reducing conditions for the conjugation. Using human MUC1 as a model antigen in mice, immunization with oxidized mannan-MUC1 fusion protein (ox-M-FP) led to complete tumor protection (challenge up to 5 x 10(7) MUC1+ tumor cells), CTLs, and a high CTL precursor (CTLp) frequency (1/6900), whereas immunization with reduced mannan-MUC1 FP (red-M-FP) led to poor protection after challenge with only 10(6) MUC1+ tumor cells, no CTLs, and a low CTLp frequency (1/87,800). Ox-M-FP selects for a T1 response (mediated here by CD8+ cells) with high interferon gamma (IFN-gamma) secretion, no interleukin 4 (IL-4), and a predominant IgG2a antibody response; red-M-FP selects for a T2-type response with IL-4 production and a high predominant IgG1 antibody response but no IFN-gamma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential activation of CD4+ T-cell precursors in vivo leads to the development of effectors with unique patterns of lymphokine secretion. To investigate whether the differential pattern of lymphokine secretion is influenced by factors associated with either the display and/or recognition of the ligand, we have used a set of ligands with various class II binding affinities but unchanged T-cell specificity. The ligand that exhibited approximately 10,000-fold higher binding to I-Au considerably increased the frequency of interferon gamma-producing but not interleukin (IL) 4- or IL-5-secreting cells in vivo. Using an established ligand-specific, CD4+ T-cell clone secreting only IL-4, we also demonstrated that stimulation with the highest affinity ligand resulted in interferon gamma production in vitro. In contrast, ligands that demonstrated relatively lower class II binding induced only IL-4 secretion. These data suggest that the major histocompatibility complex binding affinity of antigenic determinants, leading to differential interactions at the T cell-antigen-presenting cell interface, can be crucial for the differential development of cytokine patterns in T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CD3 epsilon polypeptide contributes to the cell surface display as well as to the signal transduction properties of the T-cell antigen receptor complex. Intriguingly, the distribution of CD3 epsilon is not restricted to T cells, since activated mouse, human, and avian natural killer (NK) cells do express intracytoplasmic CD3 epsilon polypeptides. CD3 epsilon is also present in the cytoplasm of fetal thymic T/NK bipotential progenitor cells, suggesting that it constitutes a component of the NK differentiation program. We report here that the genetic disruption of CD3 epsilon exon 5 alters neither NK cell development nor in vitro and in vivo NK functions, although it profoundly blocked T-cell development. These results support the notion that CD3 epsilon is dispensable for mouse NK cell ontogeny and function and further suggest that the common NK/T-cell progenitor cell utilizes CD3 epsilon as a mandatory component only when differentiating toward the T-cell lineage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigen-specific activation of T lymphocytes, via stimulation of the T-cell antigen receptor (TCR) complex, is marked by a rapid and sustained increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). It has been suggested that the second messenger inositol 1,4,5-trisphosphate (IP3) produced after TCR stimulation binds to the IP3 receptor (IP3R), an intracellular Ca(2+)-release channel, and triggers the increase in [Ca2+]i that activates transcription of the gene for T-cell growth factor interleukin 2 (IL-2). However, the role of the IP3R in T-cell signaling and possibly in plasma membrane Ca2+ influx in T cells remains unproven. Stable transfection of T cells (Jurkat) with antisense type 1 IP3R cDNA prevented type 1 IP3R expression, providing a tool for dissecting the role of IP3 signaling during T-cell activation. T cells lacking type 1 IP3R failed to increase [Ca2+]i or produce IL-2 after TCR stimulation. Moreover, depletion of intracellular Ca2+ stores without TCR activation stimulated Ca2+ influx in cells lacking the type 1 IP3R. These results establish that the type 1 IP3R is required for intracellular Ca2+ release that triggers antigen-specific T-cell proliferation but not for plasma membrane Ca2+ influx.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tyrosine phosphorylation of a 17-amino acid immunoreceptor tyrosine-based activation motif (ITAM), conserved in each of the signaling subunits of the T-cell antigen receptor (TCR), mediates the recruitment of ZAP-70 and syk protein-tyrosine kinases (PTKs) to the activated receptor. The interaction between the two tandemly arranged Src-homology 2 (SH2) domains of this family of PTKs and each of the phosphotyrosine-containing ITAMs was examined by real-time measurements of kinetic parameters. The association rate and equilibrium binding constants for the ZAP-70 and syk SH2 domains were determined for the CD3 epsilon ITAM. Both PTKs bound with ka and Kd values of 5 x 10(6) M-1.sec-1 and approximately 25 nM, respectively. Bindings to the other TCR ITAMs (zeta 1, zeta 2, gamma, and delta ITAMs) were comparable, although the zeta 3 ITAM bound approximately 2.5-fold less well. Studies of the affinity of a single functional SH2 domain of ZAP-70 provided evidence for the cooperative nature of binding of the dual SH2 domains. Mutation of either single SH2 domain decreased the Kd by > 100-fold. Finally, the critical features of the ITAM for syk binding were found to be similar to those required for ZAP-70 binding. These data provide insight into the mechanism by which the multisubunit TCR interacts with downstream effector molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The TCR is an alpha beta heterodimer, a part of the multimeric structure through which physiological T-cell activation occurs. The expression of TCR alpha chain is greatly diminished in a beta-chain-deficient mutant Jurkat cell line (J.RT3-T3.5). The relationship between the expression of the TCR alpha and beta chains has been examined by stable transfection of a series of TCR beta-chain mutant constructs into this mutant cell line. The level of alpha-chain transcript was dramatically upregulated by the expression of the beta chain and specifically by a transcript of the beta-chain variable region alone, including a transcript in which the ATG start codon was mutated. The downregulation of the endogenous alpha-chain transcripts in mutants cells lacking complete beta-chain transcripts occurred primarily at the posttranscriptional level. This evidence for a regulatory function of the TCR beta-chain gene represents an unusual regulatory pathway in which the transcript of one gene is required for the optimal expression of another gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunoprophylactic products against neosporosis during pregnancy should induce an appropriately balanced immune response. In this respect, OprI, a bacterial lipoprotein targeting toll like receptor (TLR)2, provides promising adjuvant properties. We report on the manipulation of the innate and the T-cell immune response through the fusion of OprI with the Neospora caninum chimeric protein Mic3-1-R. In contrast to Mic3-1-R, OprI-MIC3-1-R significantly activated bone-marrow dendritic cells from naïve mice. Mice immunized with OprI-Mic3-1-R induced an immune response with mixed T helper (Th)1 and Th2 properties (high levels of both immunoglobulin (Ig)G1 and IgG2a and of interleukin (IL)-10, IL-12(p70) and interferon-γ responses) whereas Mic3-1-R+saponin induced a clear Th2-biased response (low IgG2a and high IL-4 and IL-10). After mating and challenge with N. caninum, increased expression of interferon-γ was only found in placentas from OprI-Mic3-1-R immunized dams. However, no protection against vertical transmission and neonatal mortality was observed in either of the two groups. These results indicated that more exhaustive studies must be done to elucidate the immune mechanisms associated with transplacental transmission. Antigen linkage to TLR2-ligands, such as OprI, is a useful tool to investigate this enigma by reorienting the innate and adaptive immune responses against other candidate antigens in future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyethylcyanoacrylate (PECA) nanoparticles were prepared by interfacial polymerization of a water-in-oil microemulsion. Nanoparticles were isolated from the polymerization template by sequential ethanol washing and centrifugation. A nanocapsule preparation yielding the original particle size and distribution following redispersion in an aqueous solution was achieved by freeze-drying the isolated nanoparticles in a solution of 5% w/v sugar. The cytotoxicity and uptake of nanocapsules by dendritic cells was investigated using a murine-derived cell line (D1). PECA nanoparticles were found to adversely effect cell viability at concentrations greater than 10 mug/ml of polymer in the culture medium. In comparison to antigen in solution, cell uptake of antigen encapsulated within nanoparticles was significantly higher at both 4 and 37 degreesC. Following a 24 h incubation period, the percentage of cells taking-up antigen was also increased when antigen was encapsulated in nanoparticles as compared to antigen in solution. The uptake of nanoparticles and the effect of antigen formulation on morphological cell changes indicative of cell maturation were also investigated by scanning electron microscopy (SEM). SEM clearly demonstrated the adherence of nanoparticles to the cell surface. Incubation of D1 dendritic cells with nanoparticles containing antigen also resulted in morphological changes indicative of cell maturation similar to that observed when the cells were incubated with lipopolysaccharide. In contrast, cells incubated with antigen solution did not demonstrate such morphological changes and appeared similar to immature cells that had not been exposed to antigen.