865 resultados para Ant-based algorithm
Resumo:
互联网个性化推荐系统(Internet personal recommender systems)是根据用户的兴趣推荐最相关的互联网信息给用户的系统。在网上信息过载矛盾越来越严重、用户信息检索的个性化需求日益增强的现状下,推荐系统已经在搜索引擎、电子商务、网上社区等互联网关键应用中起到了关键性的作用,并且越来越受到重视。 然而,在大型网站上部署一个成熟推荐系统的代价依然很大,需要大量的计算和存储资源,推荐的准确性也依然有很大提升空间和需求,这就为推荐系统的研究提供了很多挑战。在这些挑战中推荐算法的准确性和可扩展性一直是该领域最为关注的两个问题,所谓推荐的准确性是指推荐的信息中用户真正感兴趣的比例,而可扩展性指的是系统能否在可容忍的时间和空间复杂度内处理海量的数据。如何在提高算法推荐准确性的同时增强算法的可扩展性是推荐系统改进的主要研究目标。然而,目前学术界的研究更多侧重于提高推荐算法的准确性,而对于可扩展性,很多准确性很高的算法由于需要比较复杂的计算,处理大规模动态数据的能力往往比较有限,并且它们的评测实验中并没有将可扩展性纳入到评价范畴,导致这些算法目前还很难在工业界大规模应用。 本论文的研究试图解决这一问题。通过在推荐算法中借鉴增量学习(Incremental learning)的思想,即考虑最新的训练数据来更新原有的机器学习模型,不需要或仅需要参考部分旧的训练数据,相对于使用全部数据也即批量的处理方式,增量式改进可以大大降低模型更新的复杂度,从而可以大幅度提高推荐算法在遇到新的训练数据时推荐模型更新的效率,降低计算代价,使得推荐模型的更新可以更加及时,进而提高推荐结果的准确性。具体来说,我们在提出了两种新的增量式协同过滤算法的同时,采用增量式学习的方法对目前准确性最好的若干推荐算法进行加速,特别是提高这些算法面对新的训练数据的更新模型的速度和效率,从而为这些算法的大规模的应用提供了可能。另一方面,新的训练数据包含了最新的用户兴趣,因此相对于旧的训练数据,算法在做更新时应给予更高的权重,这样才能做到推荐的结果在考虑到用户长期兴趣的同时,特别考虑用户近期的兴趣,从而使得推荐结果更加准确。这两方面归纳起来,我们旨在通过增量式学习使得推荐算法在更新时更加高效和精确,真正适用于互联网上海量数据的推荐,同时对其他增量式推荐系统方面的研究也具有借鉴意义。我们的改进工作主要包括以下几个方面: 基于主题模型的增量式推荐算法。主题模型,特别是概率隐含主题模型(PLSA)是一种广泛应用于推荐系统的主流方法,在文本推荐、图像推荐以及协同过滤推荐领域都有着很好的推荐效果。目前制约PLSA算法取得更大成功的重要因素就是PLSA算法更新的复杂度过高,使得学习模型的更新只能做批量式处理,这样就导致推荐的时效性不高,也没有办法体现用户的最新的兴趣和整体的最新动态。我们提出了一种增量式学习方法,可以应用于文本分析领域和协同过滤领域,当有新的训练数据到来时,对于基于文本的推荐,增量式更新方法仅寻找最相关的用户和文本以及涉及到的单词进行主题分布的更新,并给予新的文本以更高权重;对于协同过滤,我们的方法仅对当前用户所评分过得物品以及当前物品所涉及的用户进行更新,大大降低了更新的运算复杂度,提高了新数据在推荐算法中所占的权重,使得推荐更加准确、及时。我们的算法在天涯问答文本数据集上和MovieLens电影推荐数据集、Last.FM歌曲推荐数据集、豆瓣图书推荐数据集等协同过滤数据集上取得了很好的效果。 基于蚁群算法(Ant colony algorithm)的协同过滤推荐方法。受到群体智能(Swarm intelligence)算法的启发,我们提出了一种类似于蚁群算法的协同过滤推荐方法——Ant Collaborative Filtering,初始化阶段该方法给予每个用户或一组用户以全局唯一的单位数量的信息素,当用户对物品评分或者用户表示对该物品感兴趣时,用户所携带的信息素相应的传播到该物品上,同时该物品上已有的信息素(初始化为0)也会相应的传播给该用户;此外,用户和物品所携带的信息素会随着时间的推移有一定速率的挥发,通过挥发机制,可以在推荐时更重视用户近期的兴趣;推荐阶段,按照用户和物品所携带的信息素的种类和数量,我们可以得到相应的相似度,进而通过经典的相似度比较的方法来进行推荐。基于蚁群的协同过滤方法的优势在于可以有效的降低训练数据中的稀疏性,并且推荐算法可以实时的进行更新和推荐,同时考虑了用户兴趣随着时间的变化。我们在MovieLens电影评分、豆瓣书籍推荐、Last.FM音乐推荐数据集上验证了我们的方法。最后,我们建立了一个互联网新闻推荐系统,该系统以Firefox插件形式实现,自动采集用户浏览兴趣和偏好,后端使用不同的推荐算法推荐用户感兴趣的新闻给用户。 基于联合聚类(Co-clustering)的两阶段协同过滤方法。聚类(Clustering)是一种缩小数据规模、降低数据稀疏性的有效方法。对于庞大而稀疏的协同过滤训练数据来说,聚类是一种很自然事实上也的确很有效的预处理方法。因此我们提出了一种两阶段协同过滤框架:首先通过我们提出的一种联合聚类的方法,将原始评分矩阵分解成很多维度很小的块,每一块里面包含相似的用户对相似的物品的评分,然后通过矩阵拟合的方法(我们使用了非负矩阵分解NMF和主题模型PLSA)来对这些小块中的未知评分进行预测。当用户新增了对于某物品的一条评分,我们仅需要更新该用户或该物品所处的数据块进行重新评分预估,大大加快了评分预估的速度。我们在MovieLens电影评分数据集上验证了该算法的效果。 本文的研究成果不仅可以直接应用于大型推荐系统中,而且对于增量式推荐系统的后续研究也具有一定的指导意义。首先基于PLSA的增量式推荐算法对于其他基于图模型的推荐系统具有借鉴价值,其次蚁群推荐算法为一类新的、基于群体智能(Swarm intellignece)的协同过滤算法做出了有价值的探索,最后我们提出的两阶段协同过滤框架对于提高推荐算法的可扩展性和更新效率提出了一个通用的有效解决方案。 推荐系统是一个无止尽的优化的过程,除了推荐精度的不断提高之外,推荐算法的性能随着互联网上数据量的增加也需要进一步提高,增量式学习无疑是提高推荐算法更新速度最重要的方法,本文的研究为这一方向提供了参考。
Resumo:
In many real world situations, we make decisions in the presence of multiple, often conflicting and non-commensurate objectives. The process of optimizing systematically and simultaneously over a set of objective functions is known as multi-objective optimization. In multi-objective optimization, we have a (possibly exponentially large) set of decisions and each decision has a set of alternatives. Each alternative depends on the state of the world, and is evaluated with respect to a number of criteria. In this thesis, we consider the decision making problems in two scenarios. In the first scenario, the current state of the world, under which the decisions are to be made, is known in advance. In the second scenario, the current state of the world is unknown at the time of making decisions. For decision making under certainty, we consider the framework of multiobjective constraint optimization and focus on extending the algorithms to solve these models to the case where there are additional trade-offs. We focus especially on branch-and-bound algorithms that use a mini-buckets algorithm for generating the upper bound at each node of the search tree (in the context of maximizing values of objectives). Since the size of the guiding upper bound sets can become very large during the search, we introduce efficient methods for reducing these sets, yet still maintaining the upper bound property. We define a formalism for imprecise trade-offs, which allows the decision maker during the elicitation stage, to specify a preference for one multi-objective utility vector over another, and use such preferences to infer other preferences. The induced preference relation then is used to eliminate the dominated utility vectors during the computation. For testing the dominance between multi-objective utility vectors, we present three different approaches. The first is based on a linear programming approach, the second is by use of distance-based algorithm (which uses a measure of the distance between a point and a convex cone); the third approach makes use of a matrix multiplication, which results in much faster dominance checks with respect to the preference relation induced by the trade-offs. Furthermore, we show that our trade-offs approach, which is based on a preference inference technique, can also be given an alternative semantics based on the well known Multi-Attribute Utility Theory. Our comprehensive experimental results on common multi-objective constraint optimization benchmarks demonstrate that the proposed enhancements allow the algorithms to scale up to much larger problems than before. For decision making problems under uncertainty, we describe multi-objective influence diagrams, based on a set of p objectives, where utility values are vectors in Rp, and are typically only partially ordered. These can be solved by a variable elimination algorithm, leading to a set of maximal values of expected utility. If the Pareto ordering is used this set can often be prohibitively large. We consider approximate representations of the Pareto set based on ϵ-coverings, allowing much larger problems to be solved. In addition, we define a method for incorporating user trade-offs, which also greatly improves the efficiency.
Resumo:
Primary productivity and subsequent carbon cycling in the coastal zone have a significant impact on the global carbon budget. It is currently unclear how anthropogenic activity could alter these budgets but long term coastal time series of hydrological, biogeochemical and biological measurements represent a key means to better understand past drivers, and hence to predicting future seasonal and inter-annual variability in carbon fixation in coastal ecosystems. An 8-year time series of primary production from 2003 to 2010, estimated using a recently developed absorption-based algorithm, was used to determine the nature and extent of change in primary production at a coastal station (L4) in the Western English Channel (WEC). Analysis of the seasonal and inter-annual variability in production demonstrated that on average, nano- and pico-phytoplankton account for 48% of the total carbon fixation and micro-phytoplankton for 52%. A recent decline in the primary production of nano- and pico-phytoplankton from 2005 to 2010 was observed, corresponding with a decrease in winter nutrient concentrations and a decrease in the biomass of Phaeocystis sp. Micro-phytoplankton primary production (PPM) remained relatively constant over the time series and was enhanced in summer during periods of high precipitation. Increases in sea surface temperature, and decreases in wind speeds and salinity were associated with later spring maxima in PPM. Together these trends indicate that predicted increases in temperature and decrease in wind speeds in future would drive later spring production whilst predicted increases in precipitation would also continue these blooms throughout the summer at this site.
Resumo:
We present results from three-dimensional protein folding simulations in the HP-model on ten benchmark problems. The simulations are executed by a simulated annealing-based algorithm with a time-dependent cooling schedule. The neighbourhood relation is determined by the pull-move set. The results provide experimental evidence that the maximum depth D of local minima of the underlying energy landscape can be upper bounded by D < n(2/3). The local search procedure employs the stopping criterion (In/delta)(D/gamma) where m is an estimation of the average number of neighbouring conformations, gamma relates to the mean of non-zero differences of the objective function for neighbouring conformations, and 1-delta is the confidence that a minimum conformation has been found. The bound complies with the results obtained for the ten benchmark problems. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We propose a dynamic verification approach for large-scale message passing programs to locate correctness bugs caused by unforeseen nondeterministic interactions. This approach hinges on an efficient protocol to track the causality between nondeterministic message receive operations and potentially matching send operations. We show that causality tracking protocols that rely solely on logical clocks fail to capture all nuances of MPI program behavior, including the variety of ways in which nonblocking calls can complete. Our approach is hinged on formally defining the matches-before relation underlying the MPI standard, and devising lazy update logical clock based algorithms that can correctly discover all potential outcomes of nondeterministic receives in practice. can achieve the same coverage as a vector clock based algorithm while maintaining good scalability. LLCP allows us to analyze realistic MPI programs involving a thousand MPI processes, incurring only modest overheads in terms of communication bandwidth, latency, and memory consumption. © 2011 IEEE.
Resumo:
This paper presents a novel method that leverages reasoning capabilities in a computer vision system dedicated to human action recognition. The proposed methodology is decomposed into two stages. First, a machine learning based algorithm - known as bag of words - gives a first estimate of action classification from video sequences, by performing an image feature analysis. Those results are afterward passed to a common-sense reasoning system, which analyses, selects and corrects the initial estimation yielded by the machine learning algorithm. This second stage resorts to the knowledge implicit in the rationality that motivates human behaviour. Experiments are performed in realistic conditions, where poor recognition rates by the machine learning techniques are significantly improved by the second stage in which common-sense knowledge and reasoning capabilities have been leveraged. This demonstrates the value of integrating common-sense capabilities into a computer vision pipeline. © 2012 Elsevier B.V. All rights reserved.
Resumo:
We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of 'quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N.
Resumo:
We present a method for learning Bayesian networks from data sets containing thousands of variables without the need for structure constraints. Our approach is made of two parts. The first is a novel algorithm that effectively explores the space of possible parent sets of a node. It guides the exploration towards the most promising parent sets on the basis of an approximated score function that is computed in constant time. The second part is an improvement of an existing ordering-based algorithm for structure optimization. The new algorithm provably achieves a higher score compared to its original formulation. Our novel approach consistently outperforms the state of the art on very large data sets.
Resumo:
This paper presents a finite element formulation based on the classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as actuators.The finite element model is a single layer trinaguular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element elemenet layer or patch. An optimization of the patches position is perfomed to maximize the piezoelectric actuators efficiency as well as,the electric potential distribution is serach to reach the specified strusctura transverse displacement distribution is search to reach the specified structures trsnsverse displacement distribution (shape control). A gradient based algorithm is used for this purpose.Results are presented and discussed.
Resumo:
Composite structures incorporating piezoelectric sensors and actuators are increasingly becoming important due to the offer of potential benefits in a wide range of engineering applications such as vibration and noise supression, shape control and precisition positioning. This paper presents a finit element formulation based on classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as actuators. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezsoelectric elementlayer or patch, witch are surface bonded on the laminate. An optimization of the patches position is performed to maximize the piezoelectric actuators efficiency as well as, the electric potential distribuition is search to reach the specified structure transverse displacement distribuition (shape control). A gradient based algorithm is used for this purpose. The model is applied in the optimization of illustrative laminated plate cases, and the results are presented and discussed.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.
Resumo:
Cette thèse étudie une approche intégrant la gestion de l’horaire et la conception de réseaux de services pour le transport ferroviaire de marchandises. Le transport par rail s’articule autour d’une structure à deux niveaux de consolidation où l’affectation des wagons aux blocs ainsi que des blocs aux services représentent des décisions qui complexifient grandement la gestion des opérations. Dans cette thèse, les deux processus de consolidation ainsi que l’horaire d’exploitation sont étudiés simultanément. La résolution de ce problème permet d’identifier un plan d’exploitation rentable comprenant les politiques de blocage, le routage et l’horaire des trains, de même que l’habillage ainsi que l’affectation du traffic. Afin de décrire les différentes activités ferroviaires au niveau tactique, nous étendons le réseau physique et construisons une structure de réseau espace-temps comprenant trois couches dans lequel la dimension liée au temps prend en considération les impacts temporels sur les opérations. De plus, les opérations relatives aux trains, blocs et wagons sont décrites par différentes couches. Sur la base de cette structure de réseau, nous modélisons ce problème de planification ferroviaire comme un problème de conception de réseaux de services. Le modèle proposé se formule comme un programme mathématique en variables mixtes. Ce dernie r s’avère très difficile à résoudre en raison de la grande taille des instances traitées et de sa complexité intrinsèque. Trois versions sont étudiées : le modèle simplifié (comprenant des services directs uniquement), le modèle complet (comprenant des services directs et multi-arrêts), ainsi qu’un modèle complet à très grande échelle. Plusieurs heuristiques sont développées afin d’obtenir de bonnes solutions en des temps de calcul raisonnables. Premièrement, un cas particulier avec services directs est analysé. En considérant une cara ctéristique spécifique du problème de conception de réseaux de services directs nous développons un nouvel algorithme de recherche avec tabous. Un voisinage par cycles est privilégié à cet effet. Celui-ci est basé sur la distribution du flot circulant sur les blocs selon les cycles issus du réseau résiduel. Un algorithme basé sur l’ajustement de pente est développé pour le modèle complet, et nous proposons une nouvelle méthode, appelée recherche ellipsoidale, permettant d’améliorer davantage la qualité de la solution. La recherche ellipsoidale combine les bonnes solutions admissibles générées par l’algorithme d’ajustement de pente, et regroupe les caractéristiques des bonnes solutions afin de créer un problème élite qui est résolu de facon exacte à l’aide d’un logiciel commercial. L’heuristique tire donc avantage de la vitesse de convergence de l’algorithme d’ajustement de pente et de la qualité de solution de la recherche ellipsoidale. Les tests numériques illustrent l’efficacité de l’heuristique proposée. En outre, l’algorithme représente une alternative intéressante afin de résoudre le problème simplifié. Enfin, nous étudions le modèle complet à très grande échelle. Une heuristique hybride est développée en intégrant les idées de l’algorithme précédemment décrit et la génération de colonnes. Nous proposons une nouvelle procédure d’ajustement de pente où, par rapport à l’ancienne, seule l’approximation des couts liés aux services est considérée. La nouvelle approche d’ajustement de pente sépare ainsi les décisions associées aux blocs et aux services afin de fournir une décomposition naturelle du problème. Les résultats numériques obtenus montrent que l’algorithme est en mesure d’identifier des solutions de qualité dans un contexte visant la résolution d’instances réelles.
Resumo:
Pendant la dernière décennie nous avons vu une transformation incroyable du monde de la musique qui est passé des cassettes et disques compacts à la musique numérique en ligne. Avec l'explosion de la musique numérique, nous avons besoin de systèmes de recommandation de musique pour choisir les chansons susceptibles d’être appréciés à partir de ces énormes bases de données en ligne ou personnelles. Actuellement, la plupart des systèmes de recommandation de musique utilisent l’algorithme de filtrage collaboratif ou celui du filtrage à base de contenu. Dans ce mémoire, nous proposons un algorithme hybride et original qui combine le filtrage collaboratif avec le filtrage basé sur étiquetage, amélioré par la technique de filtrage basée sur le contexte d’utilisation afin de produire de meilleures recommandations. Notre approche suppose que les préférences de l'utilisateur changent selon le contexte d'utilisation. Par exemple, un utilisateur écoute un genre de musique en conduisant vers son travail, un autre type en voyageant avec la famille en vacances, un autre pendant une soirée romantique ou aux fêtes. De plus, si la sélection a été générée pour plus d'un utilisateur (voyage en famille, fête) le système proposera des chansons en fonction des préférences de tous ces utilisateurs. L'objectif principal de notre système est de recommander à l'utilisateur de la musique à partir de sa collection personnelle ou à partir de la collection du système, les nouveautés et les prochains concerts. Un autre objectif de notre système sera de collecter des données provenant de sources extérieures, en s'appuyant sur des techniques de crawling et sur les flux RSS pour offrir des informations reliées à la musique tels que: les nouveautés, les prochains concerts, les paroles et les artistes similaires. Nous essayerons d’unifier des ensembles de données disponibles gratuitement sur le Web tels que les habitudes d’écoute de Last.fm, la base de données de la musique de MusicBrainz et les étiquettes des MusicStrands afin d'obtenir des identificateurs uniques pour les chansons, les albums et les artistes.
Resumo:
La scoliose idiopathique de l’adolescent (SIA) est une déformation tri-dimensionelle du rachis. Son traitement comprend l’observation, l’utilisation de corsets pour limiter sa progression ou la chirurgie pour corriger la déformation squelettique et cesser sa progression. Le traitement chirurgical reste controversé au niveau des indications, mais aussi de la chirurgie à entreprendre. Malgré la présence de classifications pour guider le traitement de la SIA, une variabilité dans la stratégie opératoire intra et inter-observateur a été décrite dans la littérature. Cette variabilité s’accentue d’autant plus avec l’évolution des techniques chirurgicales et de l’instrumentation disponible. L’avancement de la technologie et son intégration dans le milieu médical a mené à l’utilisation d’algorithmes d’intelligence artificielle informatiques pour aider la classification et l’évaluation tridimensionnelle de la scoliose. Certains algorithmes ont démontré être efficace pour diminuer la variabilité dans la classification de la scoliose et pour guider le traitement. L’objectif général de cette thèse est de développer une application utilisant des outils d’intelligence artificielle pour intégrer les données d’un nouveau patient et les évidences disponibles dans la littérature pour guider le traitement chirurgical de la SIA. Pour cela une revue de la littérature sur les applications existantes dans l’évaluation de la SIA fut entreprise pour rassembler les éléments qui permettraient la mise en place d’une application efficace et acceptée dans le milieu clinique. Cette revue de la littérature nous a permis de réaliser que l’existence de “black box” dans les applications développées est une limitation pour l’intégration clinique ou la justification basée sur les évidence est essentielle. Dans une première étude nous avons développé un arbre décisionnel de classification de la scoliose idiopathique basé sur la classification de Lenke qui est la plus communément utilisée de nos jours mais a été critiquée pour sa complexité et la variabilité inter et intra-observateur. Cet arbre décisionnel a démontré qu’il permet d’augmenter la précision de classification proportionnellement au temps passé à classifier et ce indépendamment du niveau de connaissance sur la SIA. Dans une deuxième étude, un algorithme de stratégies chirurgicales basé sur des règles extraites de la littérature a été développé pour guider les chirurgiens dans la sélection de l’approche et les niveaux de fusion pour la SIA. Lorsque cet algorithme est appliqué à une large base de donnée de 1556 cas de SIA, il est capable de proposer une stratégie opératoire similaire à celle d’un chirurgien expert dans prêt de 70% des cas. Cette étude a confirmé la possibilité d’extraire des stratégies opératoires valides à l’aide d’un arbre décisionnel utilisant des règles extraites de la littérature. Dans une troisième étude, la classification de 1776 patients avec la SIA à l’aide d’une carte de Kohonen, un type de réseaux de neurone a permis de démontrer qu’il existe des scoliose typiques (scoliose à courbes uniques ou double thoracique) pour lesquelles la variabilité dans le traitement chirurgical varie peu des recommandations par la classification de Lenke tandis que les scolioses a courbes multiples ou tangentielles à deux groupes de courbes typiques étaient celles avec le plus de variation dans la stratégie opératoire. Finalement, une plateforme logicielle a été développée intégrant chacune des études ci-dessus. Cette interface logicielle permet l’entrée de données radiologiques pour un patient scoliotique, classifie la SIA à l’aide de l’arbre décisionnel de classification et suggère une approche chirurgicale basée sur l’arbre décisionnel de stratégies opératoires. Une analyse de la correction post-opératoire obtenue démontre une tendance, bien que non-statistiquement significative, à une meilleure balance chez les patients opérés suivant la stratégie recommandée par la plateforme logicielle que ceux aillant un traitement différent. Les études exposées dans cette thèse soulignent que l’utilisation d’algorithmes d’intelligence artificielle dans la classification et l’élaboration de stratégies opératoires de la SIA peuvent être intégrées dans une plateforme logicielle et pourraient assister les chirurgiens dans leur planification préopératoire.
Resumo:
Le problème d'allocation de postes d'amarrage (PAPA) est l'un des principaux problèmes de décision aux terminaux portuaires qui a été largement étudié. Dans des recherches antérieures, le PAPA a été reformulé comme étant un problème de partitionnement généralisé (PPG) et résolu en utilisant un solveur standard. Les affectations (colonnes) ont été générées a priori de manière statique et fournies comme entrée au modèle %d'optimisation. Cette méthode est capable de fournir une solution optimale au problème pour des instances de tailles moyennes. Cependant, son inconvénient principal est l'explosion du nombre d'affectations avec l'augmentation de la taille du problème, qui fait en sorte que le solveur d'optimisation se trouve à court de mémoire. Dans ce mémoire, nous nous intéressons aux limites de la reformulation PPG. Nous présentons un cadre de génération de colonnes où les affectations sont générées de manière dynamique pour résoudre les grandes instances du PAPA. Nous proposons un algorithme de génération de colonnes qui peut être facilement adapté pour résoudre toutes les variantes du PAPA en se basant sur différents attributs spatiaux et temporels. Nous avons testé notre méthode sur un modèle d'allocation dans lequel les postes d'amarrage sont considérés discrets, l'arrivée des navires est dynamique et finalement les temps de manutention dépendent des postes d'amarrage où les bateaux vont être amarrés. Les résultats expérimentaux des tests sur un ensemble d'instances artificielles indiquent que la méthode proposée permet de fournir une solution optimale ou proche de l'optimalité même pour des problème de très grandes tailles en seulement quelques minutes.