960 resultados para Ant colony optimization
Resumo:
Based on the morphology of workers, gynes and males, we revise the taxonomy of nominal taxa traditionally included by authors in the fungus-growing ant genus Mycetophylax. Our results indicate that Mycetophylax Emery (Myrmicocrypta brittoni Wheeler, 1907, type species, by designation of Emery, 1913; junior synonym of Cyphomyrmex conformis Mayr, 1884 by Kempf, 1962) includes M. conformis, M. simplex (Emery, 1888), and M. morschi (Emery, 1888) new combination (formerly in Cyphomyrmex), with several synonymies. Mycetophylax bruchi (Santschi, 1916) does not belong to the same genus and is diagnosed, in addition to other characters, by a psammophore arising at the anterior margin of the clypeus. For this species we are resurrecting from synonymy Paramycetophylax Kusnezov, 1956 (Mycetophylax bruchi as type species, by original designation, with M. cristulatus as its new synonym). Myrmicocrypta emeryi Forel, 1907 is the only attine in which females lack the median clypeal seta and have the antennal insertion areas very much enlarged and anteriorly produced, with the psammophore setae arising from the middle of the clypeus and not at its anterior margin as in Paramycetophylax. Notwithstanding its inclusion in Mycetophylax by recent authors, it is here recognized as belonging to a hitherto undescribed, thus far monotypic genus, Kalathomyrmex new genus (Myrmicocrypta emeryi as its type species, here designated). We redescribe workers, gynes and males of all species in the three genera and describe for the first time gynes of Mycetophylax conformis and M. simplex, males of M. simplex and M. morschi, and gynes of P. bruchi. Furthermore we present a key to the workers of the taxa treated here (most formerly included under the name Mycetophylax), a key to workers of the Mycetophylax in the revised sense, SEM pictures and high resolution AutoMontage(C) photographs of the species, along with maps of collection records and a summary of biological observations.
Resumo:
A new myrmicine ant, Tropidomyrmex elianae gen. n. & sp. n., is described from southeastern and central Brazil, based on workers, ergatoid gynes, males and larvae. Tropidomyrmex workers are relatively small, monomorphic, characterized mainly by the feebly pigmented and extremely thin integument; subfalcate mandibles bearing a single apical tooth; palpal formula 1,2; clypeus relatively broad and convex; reduced compound eyes; propodeum unarmed and with a strongly medially depressed declivous face; double and bilobed well developed subpostpetiolar processes; and peculiarities in the sting apparatus. A colony fragment of T. elianae containing workers, ergatoid gynes, males, and brood was found inside a ground termite nest (Anoplotermes pacificus Apicotermitinae) in a montane rocky scrubland in the state of Minas Gerais, southeastern Brazil. Tropidomyrmex elianae is known also from two workers collected in leaf litter samples processed with a Winkler extractor, from the state of Tocantins, central-north Brazil. Despite the differences from the accepted solenopsidine genera, Tropidomyrmex is tentatively assigned to this tribe. Within the solenopsidine ants, the genus is apparently related to Tranopelta. Tropidomyrmex is marked by extreme reductions, perhaps reflecting adaptations to particular habits and habitats.
Resumo:
Social facilitation occurs when an animal is more likely to behave in a certain way in response to other animals engaged in the same behaviour. For example, an individual returning to the nest with food stimulates other ants to leave and to forage. In the present study we demonstrate the existence of new facets in the colony organization of Dinoponera quadriceps: a positive feedback between the incoming food and the activation of new foragers, and the occurrence of incipient task partitioning during the food sharing. Lower-ranked workers located inside the nest process protein resources and higher-ranked workers handle smaller pieces and distribute them to the larvae. In conclusion, D. quadriceps has a decentralized pattern of task allocation with a double regulatory mechanism, which can be considered a sophisticated aspect of division of labour in ponerine ants.
Resumo:
Cuticular hydrocarbons play important roles as chemical signatures of individuals, castes, sex and brood. They also can mediate the regulation of egg laying in ants, by informing directly or indirectly the reproductive status of queens. In this study we asked whether cuticular hydrocarbon profiles are correlated with castes and sex of Camponotus textor. Cuticular hydrocarbons were extracted from part of a mature colony (80 workers, 27 major workers, 27 queens, 27 virgin queens and 27 males). Results showed that cuticular hydrocarbons varied quantitatively and qualitatively among the groups and this variation was sufficiently strong to allow separation of castes and genders. We discuss the specificity of some compounds as possible regulatory compounds of worker tasks and reproduction in C. textor.
Resumo:
1. Sodium is often a limiting nutrient for terrestrial animals, and may be especially sought by herbivores. Leafcutter ants are dominant herbivores in the Neotropics, and leafcutter foraging may be affected by nutritional demands of the colony and/or the demands of their symbiotic fungal mutualists. We hypothesized that leafcutter colonies are sodium limited, and that leafcutter ants will therefore forage specifically for sodium. 2. Previous studies demonstrated that leafcutter Atta cephalotes Linnaeus workers preferentially cut and remove paper baits treated with NaCl relative to water control baits. Atta cephalotes colonies in this study were presented with baits offering NaCl, Na2SO4, and KCl to test whether leafcutters forage specifically for sodium. Sucrose and water were used as positive and negative controls, respectively. 3. Atta foragers removed significantly more of the baits treated with NaCl and Na2SO4 than the KCl treatment, which did not differ from water. The NaCl and Na2SO4 treatments were collected at similar rates. We conclude A. cephalotes forage specifically for sodium rather than for anions (chloride) or solutes in general. This study supports the hypothesis that leafcutter ants are limited by, and preferentially forage for, sodium.
Resumo:
UV-B-Strahlung, die durch die fortschreitende Zerstörung der Ozonschicht zunimmt, ist hauptsächlich für das Entstehen von Basaliomen und Plattenepithelkarzinomen verantwort-lich, an denen jedes Jahr etwa 2-3 Millionen Menschen weltweit erkranken. UV-B indu-zierte Hautkarzinogenese ist ein komplexer Prozess, bei dem vor allem die mutagenen und immunsuppressiven Wirkungen der UV-B-Strahlung von Bedeutung sind. Die Rolle von GM-CSF in der Hautkarzinogenese ist dabei widersprüchlich. Aus diesem Grund wurde die Funktion von GM-CSF in vivo in der UV-B induzierten Hautkarzinogenese mittels zwei bereits etablierter Mauslinien untersucht: Erstens transgene Mäuse, die einen GM-CSF Antagonisten unter der Kontrolle des Keratin-10-Promotors in den suprabasalen Schichten der Epidermis exprimieren und zweitens solche, die unter dem Keratin-5-Promotor murines GM-CSF in der Basalschicht der Epidermis überexprimieren. Eine Gruppe von Tieren wurde chronisch, die andere akut bestrahlt. Die konstitutionelle Verfassung der Tiere mit erhöhter GM-CSF-Aktivität in der Haut war nach chronischer UV-B-Bestrahlung insgesamt sehr schlecht. Sie wiesen deshalb eine stark erhöhte Mortali-tät auf. Dies ist sowohl auf die hohe Inzidenz als auch dem frühen Auftreten der benignen und malignen Läsionen zurückzuführen. Eine verminderte GM-CSF Aktivität verzögerte dagegen die Karzinomentwicklung und erhöhte die Überlebensrate leicht. GM-CSF wirkt auf verschiedenen Ebenen tumorpromovierend: Erstens erhöht eine gesteigerte Mastzell-anzahl in der Haut der GM-CSF überexprimierenden Tiere per se die Suszeptibilität für Hautkarzinogenese. Zweitens stimuliert GM-CSF die Keratinozytenproliferation. Dadurch kommt es nach UV-B-Bestrahlung zu einer prolongierten epidermalen Hyperproliferation, die zur endogenen Tumorpromotion beiträgt, indem sie die Bildung von Neoplasien unter-stützt. Der Antagonist verzögert dagegen den Proliferationsbeginn, die Keratinozyten blei-ben demzufolge länger in der G1-Phase und der durch UV-B verursachte DNA-Schaden kann effizienter repariert werden. Drittens kann GM-CSF die LCs nicht als APCs aktivie-ren und eine Antitumorimmunität induzieren, da UV-B-Strahlung zur Apoptose von LCs bzw. zu deren Migration in Richtung Lymphknoten führt. Zusätzlich entwickeln GM-CSF überexprimierende Tiere in ihrer Haut nach UV-B-Bestrahlung ein Millieu von antago-nistisch wirkenden Zytokinen, wie TNF-a, TGF-b1 und IL-12p40 und GM-CSF, die proinflammatorische Prozesse und somit die Karzinomentwicklung begünstigen. Der Anta-gonist hemmt nach UV-B-Bestrahlung die Ausschüttung sowohl von immunsuppressiven Zytokinen, wie etwa TNF-a, als auch solchen, die die Th2-Entwicklung unterstützen, wie etwa IL-10 und IL-4. Dies wirkt sich negativ auf die Karzinomentwicklung aus.
Resumo:
In my dissertation I investigated the influence of behavioral variation between and within ant colonies on group performance. In particular, I analyzed how evolution shapes behavior in response to ecological conditions, and whether within-group diversity improves productivity as suggested by theory. Our field and laboratory experiments showed that behavioral diverse groups are more productive. Different aggression levels within colonies were beneficial under competitive field situations, whereas diversity in brood care and exploratory behavior were favored in non-competitive laboratory situations. We then examined whether population density and social parasite presence shape aggression through phenotypic plasticity and/or natural selection. The importance of selection was indicated by the absence of density or parasite effects on aggression in a field manipulation. Indeed, more aggressive colonies fared better under high density and during parasite attack. When analyzing the proximate causes of individual behavioral variation, ovarian development was shown to be linked to division of labor and aggressiveness. Finally, our studies show that differences in the collective behavior can be linked to immune defense and productivity. My dissertation demonstrates that behavioral variation should be studied on multiple scales and when possible combined with physiological analyses to better understand the evolution of animal personalities in social groups.rn
Resumo:
In meiner Dissertation beschäftigte ich mich mit unterschiedlichen Verteidungsstrategien, derenrnEffektivität und Evolution, der Ameisenart Temnothorax longispinosus (“Sklaven”), gegenüberrneinem sozialen Parasiten - der nahverwandten, sklavenhaltenden Art Protomognathusrnamericanus (“Sklavenhalter”). Wir entdeckten eine neue Kategorie der Verteidigungsstrategie,rnwelche es dem Wirten ermöglicht, flexibel auf die nicht vorhersagbaren Angriffe des Parasitenrnzu reagieren. Darüber hinaus erforschten wir, wie die Wirte ihre kollektive Verteidigung an einernVielzahl unterschiedlicher Angreifer anpassen können. Wir konnten feststellen, dass Wirte in derrnLage sind ihre kollektive Verteidigung dem Grad der Bedrohung anzupassen. Dies weist daraufrnhin, dass Selektion die Verteidigung gegen unterschiedliche Typen von Angreifern voneinanderrnunabhängig beeinflussen könnte. In einer dritten Studie belegten wir experimentell, dass diernParasiten die Evolution der Kolonieaggressivität der Wirtsart direkt beeinflussen. Die letztenrnbeiden Publikationen beschäftigten sich mit Sklavenrebellion, einer rätselhaftenrnVerteidigungsstrategie, da noch unklar ist, wie eine Eigenschaft von nicht reproduzierendenrnIndividuen vererbt werden kann. In einer Metaanalyse konnten wir die weite Verbreitung undrnhohe Variabilität dieser Eigenschaft dokumentieren, und fanden Hinweise, dassrnVerwandtenselektion eine mögliche Erklärung für die Evolution dieses Merkmals darstellenrnkönnte.
Resumo:
Inbreeding can lead to a fitness reduction due to the unmasking of deleterious recessive alleles and the loss of heterosis. Therefore, most sexually reproducing organisms avoid inbreeding, often by disperal. Besides the avoidance of inbreeding, dispersal lowers intraspecific competition on a local scale and leads to a spreading of genotypes into new habitats. In social insects, winged reproductives disperse and mate during nuptial flights. Therafter, queens independently found a new colony. However, some species also produce wingless sexuals as an alternative reproductive tactic. Wingless sexuals mate within or close to their colony and queens either stay in the nest or they found a new colony by budding. During this dependent colony foundation, wingless queens are accompanied by a fraction of nestmate workers. The production of wingless reproductives therefore circumvents the risks associated with dispersal and independent colony foundation. However, the absence of dispersal can lead to inbreeding and local competition.rnIn my PhD-project, I investigated the mating biology of Hypoponera opacior, an ant that produces winged and wingless reproductives in a population in Arizona. Besides the investigation of the annual reproductive cycle, I particularly focused on the consequences of wingless reproduction. An analysis of sex ratios in wingless sexuals should reveal the relative importance of local resource competition among queens (that mainly compete for the help of workers) and local mate competition among males. Further, sexual selection was expected to act on wingless males that were previously found to mate with and mate-guard pupal queens in response to local mate competition. We studied whether males are able to adapt their mating behaviour to the current competitive situation in the nest and which traits are under selection in this mating situation. Last, we investigated the extent and effects of inbreeding. As the species appeared to produce non-dispersive males and queens quite frequently, we assumed to find no or only weak negative effects of inbreeding and potentially mechanisms that moderate inbreeding levels despite frequent nest-matings.rnWe found that winged and wingless males and queens are produced during two separate seasons of the year. Winged sexuals emerge in early summer and conduct nuptial flights in July, when climate conditions due to frequent rainfalls lower the risks of dispersal and independent colony foundation. In fall, wingless sexuals are produced that reproduce within the colonies leading to an expansion on the local scale. The absence of dispersal during this second reproductive season resulted in a local genetic population viscosity and high levels of inbreeding within the colonies. Male-biased sex ratios in fall indicated a greater importance of local resource competition among queens than local mate competition among males. Males were observed to adjust mate-guarding durations to the competitive situation (i.e. the number of competing males and pupae) in the nest, an adaptation that helps maximising their reproductive success. Further, sexual selection was found to act on the timing of emergence as well as on body size in these males, i.e. earlier emerging and larger males show a higher mating success. Genetic analyses revealed that wingless males do not actively avoid inbreeding by choosing less related queens as mating partners. Further, we detected diploid males, a male type that is produced instead of diploid females if close relatives mate. In contrast to many other Hymenopteran species, diploid males were here viable and able to sire sterile triploid offspring. They did not differ in lifespan, body size and mating success from “normal” haploid males. Hence, diploid male production in H. opacior is less costly than in other social Hymenopteran species. No evidence of inbreeding depression was found on the colony level but more inbred colonies invested more resources into the production of sexuals. This effect was more pronounced in the dispersive summer generation. The increased investment in outbreeding sexuals can be regarded as an active strategy to moderate the extent and effects of inbreeding. rnIn summary, my thesis describes an ant species that has evolved alternative reproductive tactics as an adaptation to seasonal environmental variations. Hereby, the species is able to maintain its adaptive mating system without suffering from negative effects due to the absence of dispersal flights in fall.rn
Resumo:
A new microtiter-plate dilution method was applied during the expedition ANTARKTIS-XI/2 with RV Polarstern to determine the distribution of copiotrophic and oligotrophic bacteria in the water columns at polar fronts. Twofold serial dilutions were performed with an eight-channel Electrapette in 96-wells plates by mixing 150 µl of seawater with 150 µl of copiotrophic or olitrophic Trypticase-Broth, three times per well. After incubation of about 6 month at 2 °C, turbidities were measured with an eight-channel photometer at 405 nm and combinations of positive test results for three consecutive dilutions chosen and compared with a Most Probable Number table, calculated for 8 replicates and twofold serial dilutions. Densities of 12 to 661 cells/ml for copiotrophs, and 1 to 39 cells/ml for oligotrophs were found. Colony Forming Units on copiotrophic Trypticase-Agar were between 6 and 847 cells/ml, which is in the same range as determined with the MPN method.