963 resultados para Annihilating-Ideal Graphs
Resumo:
Let be a set of points in the plane. A geometric graph on is said to be locally Gabriel if for every edge in , the Euclidean disk with the segment joining and as diameter does not contain any points of that are neighbors of or in . A locally Gabriel graph(LGG) is a generalization of Gabriel graph and is motivated by applications in wireless networks. Unlike a Gabriel graph, there is no unique LGG on a given point set since no edge in a LGG is necessarily included or excluded. Thus the edge set of the graph can be customized to optimize certain network parameters depending on the application. The unit distance graph(UDG), introduced by Erdos, is also a LGG. In this paper, we show the following combinatorial bounds on edge complexity and independent sets of LGG: (i) For any , there exists LGG with edges. This improves upon the previous best bound of . (ii) For various subclasses of convex point sets, we show tight linear bounds on the maximum edge complexity of LGG. (iii) For any LGG on any point set, there exists an independent set of size .
Resumo:
In 1987, Kalai proved that stacked spheres of dimension d >= 3 are characterised by the fact that they attain equality in Barnette's celebrated Lower Bound Theorem. This result does not extend to dimension d = 2. In this article, we give a characterisation of stacked 2-spheres using what we call the separation index. Namely, we show that the separation index of a triangulated 2-sphere is maximal if and only if it is stacked. In addition, we prove that, amongst all n-vertex triangulated 2-spheres, the separation index is minimised by some n-vertex flag sphere for n >= 6. Furthermore, we apply this characterisation of stacked 2-spheres to settle the outstanding 3-dimensional case of the Lutz-Sulanke-Swartz conjecture that ``tight-neighbourly triangulated manifolds are tight''. For dimension d >= 4, the conjecture has already been proved by Effenberger following a result of Novik and Swartz. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The boxicity (respectively cubicity) of a graph G is the least integer k such that G can be represented as an intersection graph of axis-parallel k-dimensional boxes (respectively k-dimensional unit cubes) and is denoted by box(G) (respectively cub(G)). It was shown by Adiga and Chandran (2010) that for any graph G, cub(G) <= box(G) log(2) alpha(G], where alpha(G) is the maximum size of an independent set in G. In this note we show that cub(G) <= 2 log(2) X (G)] box(G) + X (G) log(2) alpha(G)], where x (G) is the chromatic number of G. This result can provide a much better upper bound than that of Adiga and Chandran for graph classes with bounded chromatic number. For example, for bipartite graphs we obtain cub(G) <= 2(box(G) + log(2) alpha(G)] Moreover, we show that for every positive integer k, there exist graphs with chromatic number k such that for every epsilon > 0, the value given by our upper bound is at most (1 + epsilon) times their cubicity. Thus, our upper bound is almost tight. (c) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper discusses dynamic modeling of non-isolated DC-DC converters (buck, boost and buck-boost) under continuous and discontinuous modes of operation. Three types of models are presented for each converter, namely, switching model, average model and harmonic model. These models include significant non-idealities of the converters. The switching model gives the instantaneous currents and voltages of the converter. The average model provides the ripple-free currents and voltages, averaged over a switching cycle. The harmonic model gives the peak to peak values of ripple in currents and voltages. The validity of all these models is established by comparing the simulation results with the experimental results from laboratory prototypes, at different steady state and transient conditions. Simulation based on a combination of average and harmonic models is shown to provide all relevant information as obtained from the switching model, while consuming less computation time than the latter.
Resumo:
On the basis of the pseudopotential plane-wave method and the local-density-functional theory, this paper studies energetics, stress-strain relation, stability, and ideal strength of beta-SiC under various loading modes, where uniform uniaxial extension and tension and biaxial proportional extension are considered along directions [001] and [111]. The lattice constant, elastic constants, and moduli of equilibrium state are calculated and the results agree well with the experimental data. As the four SI-C bonds along directions [111], [(1) over bar 11], [11(1) over bar] and [111] are not the same under the loading along [111], internal relaxation and the corresponding internal displacements must be considered. We find that, at the beginning of loading, the effect of internal displacement through the shuffle and glide plane diminishes the difference among the four Si-C bonds lengths, but will increase the difference at the subsequent loading, which will result in a crack nucleated on the {111} shuffle plane and a subsequently cleavage fracture. Thus the corresponding theoretical strength is 50.8 GPa, which agrees well with the recent experiment value, 53.4 GPa. However, with the loading along [001], internal relaxation is not important for tetragonal symmetry. Elastic constants during the uniaxial tension along [001] are calculated. Based on the stability analysis with stiffness coefficients, we find that the spinodal and Born instabilities are triggered almost at the same strain, which agrees with the previous molecular-dynamics simulation. During biaxial proportional extension, stress and strength vary proportionally with the biaxial loading ratio at the same longitudinal strain.
Resumo:
Introducción: En el medio social existen numerosas manifestaciones culturales en torno a la justicia, ideal supremo de la convivencia armónica y pacífica. Diversas imágenes, literarias y artísticas, representan ese valor permanente de la humanidad. Páginas hermosas, no exentas de poesía, han sido escritas para describirla, pues todo gran pensador le ha dedicado un libro o una simple línea. Recordemos a escritores que legaron a la humanidad mensajes sublimes, como Cervantes, Shakespeare y Montaigne. Al nombre de esos geniales creadores se deben añadir los de Charles Dickens, León Tolstoi, Bertolt Brecht y Arthur Miller, quienes elevaron la prosa a su máximo lucimiento. De quien más se habla en nuestros días es del checo Franz Kafka, autor que describió en su obra El proceso la angustia de los justiciables. Un género literario algo olvidado es la oratoria forense, siendo su precursor el griego Demóstenes, brillante expositor de las defensas que asumió como abogado, entre otras las de su propio padre...
Resumo:
The unstable stacking criteria for an ideal copper crystal under homogeneous shearing and for a cracked copper crystal under pure mode II loading are analysed. For the ideal crystal under homogeneous shearing, the unstable stacking energy gamma(us) defined by Rice in 1992 results from shear with no relaxation in the direction normal to the slip plane. For the relaxed shear configuration, the critical condition for unstable stacking does not correspond to the relative displacement Delta = b(p)/2, where b(p) is the Burgers vector magnitude of the Shockley partial dislocation, but to the maximum shear stress. Based on this result, the unstable stacking energy Gamma(us) is defined for the relaxed lattice. For the cracked crystal under pure mode II loading, the dislocation configuration corresponding to Delta = b(p)/2 is a stable state and no instability occurs during the process of dislocation nucleation. The instability takes place at approximately Delta = 3b(p)/4. An unstable stacking energy Pi(us) is defined which corresponds to the unstable stacking state at which the dislocation emission takes place. A molecular dynamics method is applied to study this in an atomistic model and the results verify the analysis above.
Resumo:
The effects of stochastic extension on the statistical evolution of the ideal microcrack system are discussed. First, a general theoretical formulation and an expression for the transition probability of extension process are presented, then the features of evolution in stochastic model are demonstrated by several numerical results and compared with that in deterministic model.
Resumo:
The ideal micro-cracks are treated with the number-density function; the characteristics of their evolution are investigated; a deterministic model is applied to the discussion of their extension. It is discovered that under certain conditions saturation may occur in the number-density. The main features of the statistical formulation are illustrated by several examples and compared with those observed in experiments.