336 resultados para Aneurysm
Resumo:
OBJECTIVE The cause precipitating intracranial aneurysm rupture remains unknown in many cases. It has been observed that aneurysm ruptures are clustered in time, but the trigger mechanism remains obscure. Because solar activity has been associated with cardiovascular mortality and morbidity, we decided to study its association to aneurysm rupture in the Swiss population. METHODS Patient data were extracted from the Swiss SOS database, at time of analysis covering 918 consecutive patients with angiography-proven aneurysmal subarachnoid hemorrhage treated at 7 Swiss neurovascular centers between January 1, 2009, and December 31, 2011. The daily rupture frequency (RF) was correlated to the absolute amount and the change in various parameters of interest representing continuous measurements of solar activity (radioflux [F10.7 index], solar proton flux, solar flare occurrence, planetary K-index/planetary A-index, Space Environment Services Center [SESC] sunspot number and sunspot area) using Poisson regression analysis. RESULTS During the period of interest, there were 517 days without recorded aneurysm rupture. There were 398, 139, 27, 12, 1, and 1 days with 1, 2, 3, 4, 5, and 6 ruptures per day. Poisson regression analysis demonstrated a significant correlation of F10.7 index and RF (incidence rate ratio [IRR] = 1.006303; standard error (SE) 0.0013201; 95% confidence interval (CI) 1.003719-1.008894; P < 0.001), according to which every 1-unit increase of the F10.7 index increased the count for an aneurysm to rupture by 0.63%. A likewise statistically significant relationship of both the SESC sunspot number (IRR 1.003413; SE 0.0007913; 95% CI 1.001864-1.004965; P < 0.001) and the sunspot area (IRR 1.000419; SE 0.0000866; 95% CI 1.000249-1.000589; P < 0.001) emerged. All other variables analyzed showed no significant correlation with RF. CONCLUSIONS We found greater radioflux, SESC sunspot number, and sunspot area to be associated with an increased count of aneurysm rupture. The clinical meaningfulness of this statistical association must be interpreted carefully and future studies are warranted to rule out a type-1 error.
Resumo:
Objective: A number of intrinsic and extrinsic risk factors for the rupture of intracranial aneurysms have been identified. Still, the cause precipitating aneurysm rupture remains unknown in many cases. In addition, it has been observed that aneurysm ruptures are clustered in time but the trigger mechanism remains obscure. As solar activity has been associated with cardiovascular mortality and morbidity we decided to study ist association to aneurysm rupture in the Swiss population. Method: Patient data was extracted from the Swiss SOS database, at time of analysis covering 918 patients with angiography-proven aSAH treated at seven Swiss neurovascular centers between 01/01/2009 – 12/31/2011. The number of aneurysm rupture per day, week, month (Daily/Weekly/Monthly Rupture Frequency = RF) was measured and correlated to the absolute amount and the change in various parameters of interest representing continuous measurements of solar activity (radioflux (F10.7 index), solar proton flux, solar flare occurrence, planetary K-index/planetary A-index) using Poisson regression analysis. Results: Of a consecutive series of 918 cases of SAH, precise determination of the date of symptom onset was possible in 816 (88.9%). During the period of interest there were 517 days without recorded aneurysm rupture. There were 398, 139, 27 and 12 days with 1, 2, 3, and 4 ruptures per day. Five or 6 ruptures were only noted on a single day each. Poisson regression analysis demonstrated a significant correlation of F10.7 index and aneurysm rupture (incidence rate ratio (IRR) = 1.006303; standard error (SE) 0.0013201; 95% confidence interval (CI) 1.003719 – 1.008894; p<0.001), according to which every 1-unit increase of the F10.7 index increased the count for an aneurysm to rupture by 0.63%. As the F10.7 index is known to correlate well with the Space Environment Services Center (SESC) sunspot number, we performed additional analyses on SESC sunspot number and sunspot area. Here, a likewise statistically significant relationship of both the SESC sunspot number (IRR 1.003413; SE 0.0007913; 95%CI 1.001864 – 1.004965; p<0.001) and the sunspot area (IRR 1.000419; SE 0.0000866; 95%CI 1.000249 – 1.000589; p<0.001) emerged. All other variables analyzed showed no correlation with RF. Conclusions: Using valid methods, we found higher radioflux, sunspot number and sunspot area to be associated with an increased count of aneurysm rupture. Since we were using rupture frequencies rather than incidences and because we cannot explain the physiological basis of this statistical association, the clinical meaningfulness of this statistical association must be interpreted carefully. Future studies are warranted to rule out a type-1 error.
Resumo:
AIMS In this work, we provide novel insight into the morphology of dissecting abdominal aortic aneurysms in angiotensin II-infused mice. We demonstrate why they exhibit a large variation in shape and, unlike their human counterparts, are located suprarenally rather than infrarenally. METHODS AND RESULTS We combined synchrotron-based, ultra-high resolution ex vivo imaging (phase contrast X-Ray tomographic microscopy) with in vivo imaging (high-frequency ultrasound and contrast-enhanced micro-CT) and image-guided histology. In all mice, we observed a tear in the tunica media of the abdominal aorta near the ostium of the celiac artery. Independently we found that, unlike the gradual luminal expansion typical for human aneurysms, the outer diameter increase of angiotensin II-induced dissecting aneurysms in mice was related to one or several intramural haematomas. These were caused by ruptures of the tunica media near the ostium of small suprarenal side branches, which had never been detected by the established small animal imaging techniques. The tear near the celiac artery led to apparent luminal dilatation, while the intramural haematoma led to a dissection of the tunica adventitia on the left suprarenal side of the aorta. The number of ruptured branches was higher in those aneurysms that extended into the thoracic aorta, which explained the observed variability in aneurysm shape. CONCLUSION Our results are the first to describe apparent luminal dilatation, suprarenal branch ruptures, and intramural haematoma formation in dissecting abdominal aortic aneurysms in mice. Moreover, we validate and demonstrate the vast potential of phase contrast X-ray tomographic microscopy in cardiovascular small animal applications.
Resumo:
BACKGROUND AND PURPOSE Currently one of the most widely used models for the development of endovascular techniques and coiling devices for treatment of aneurysm is the elastase-induced aneurysm model in the rabbit carotid artery. Microsurgical techniques for creating an aneurysm with a venous pouch have also been established, although both techniques usually result in aneurysms less than 1 cm in diameter. We investigated whether an increase in blood flow toward the neck would produce larger aneurysms in a microsurgical venous pouch model. MATERIALS AND METHODS Microsurgical operations were performed on 11 New Zealand white rabbits. Both carotid arteries and the right jugular vein were dissected, and the right carotid artery was temporarily clipped followed by an arteriotomy. The left carotid artery was also clipped proximally, ligated distally, and sutured onto the proximal half of the arteriotomy in the right carotid artery. The venous graft was sutured onto the distal half of the arteriotomy. Digital subtraction angiography was also performed. RESULTS Angiography showed patent anastomosed vessels and aneurysms in the seven surviving rabbits. Mean aneurysm measurements among surviving rabbits with patent vessels were: 13.9 mm length, 9.3 mm width, and neck diameter 4.7 mm. The resulting mean aspect ratio was 3.35 and the mean bottleneck ratio was 3.05. CONCLUSION A large venous graft and increased blood flow toward the base of the aneurysm seem to be key factors in the creation of large venous pouch aneurysms. These large aneurysms allow testing of endovascular devices designed for large and giant aneurysms.
Resumo:
INTRODUCTION Since the initial publication in 2000, Angiotensin II-infused mice have become one of the most popular models to study abdominal aortic aneurysm in a pre-clinical setting. We recently used phase contrast X-ray based computed tomography to demonstrate that these animals develop an apparent luminal dilatation and an intramural hematoma, both related to mural ruptures in the tunica media in the vicinity of suprarenal side branches. AIMS The aim of this narrative review was to provide an extensive overview of small animal applicable techniques that have provided relevant insight into the pathogenesis and morphology of dissecting AAA in mice, and to relate findings from these techniques to each other and to our recent PCXTM-based results. Combining insights from recent and consolidated publications we aimed to enhance our understanding of dissecting AAA morphology and anatomy. RESULTS AND CONCLUSION We analyzed in vivo and ex vivo images of aortas obtained from macroscopic anatomy, histology, high-frequency ultrasound, contrast-enhanced micro-CT, micro-MRI and PCXTM. We demonstrate how in almost all publications the aorta has been subdivided into a part in which an intact lumen lies adjacent to a remodeled wall/hematoma, and a part in which elastic lamellae are ruptured and the lumen appears to be dilated. We show how the novel paradigm fits within the existing one, and how 3D images can explain and connect previously published 2D structures. We conclude that PCXTM-based findings are in line with previous results, and all evidence points towards the fact that dissecting AAAs in Angiotensin II-infused mice are actually caused by ruptures of the tunica media in the immediate vicinity of small side branches.
Resumo:
The history of cerebral aneurysm surgery owes a great tribute to the tenacity of pioneering neurosurgeons who designed and developed the clips used to close the aneurysms neck. However, until the beginning of the past century, surgery of complex and challenging aneurysms was impossible due to the lack of surgical microscope and commercially available sophisticated clips. The modern era of the spring clips began in the second half of last century. Until then, only malleable metal clips and other non-metallic materials were available for intracranial aneurysms. Indeed, the earliest clips were hazardous and difficult to handle. Several neurosurgeons put their effort in developing new clip models, based on their personal experience in the treatment of cerebral aneurysms. Finally, the introduction of the surgical microscope, together with the availability of more sophisticated clips, has allowed the treatment of complex and challenging aneurysms. However, today none of the new instruments or tools for surgical therapy of aneurysms could be used safely and effectively without keeping in mind the lessons on innovative surgical techniques provided by great neurovascular surgeons. Thanks to their legacy, we can now treat many types of aneurysms that had always been considered inoperable. In this article, we review the basic principles of surgical clipping and illustrate some more advanced techniques to be used for complex aneurysms.
Resumo:
Ischemic complications during aneurysm surgery are a frequent cause of postoperative infarctions and new neurological deficits. In this article, we discuss imaging and neurophysiological tools that may help the surgeon to detect intraoperative ischemia. The strength of intraoperative digital subtraction angiography (DSA) is the full view of the arterial and venous vessel. DSA is the gold standard in complex and giant aneurysms, but due to certain disadvantages, it cannot be considered standard of care. Microvascular Doppler sonography is probably the fastest diagnostic tool and can quickly aid diagnosis of large vessel occlusions. Intraoperative indocyanine green videoangiography is the best tool to assess flow in perforating and larger arteries, as well as occlusion of the aneurysm sac. Intraoperative neurophysiological monitoring with somatosensory and motor evoked potentials indirectly measures blood flow by recording neuronal function. It covers all causes of intraoperative ischemia, provided that ischemia occurs in the brain areas under surveillance. However, every method has advantages and disadvantages. No single method is superior to the others in every aspect. Therefore, it is very important for the neurosurgeon to know the strengths and weaknesses of each tool in order to have them available, to know how to use them for each individual situation, and to be ready to apply them within the time window for reversible cerebral ischemia.
Resumo:
OBJECTIVE We endeavored to develop an unruptured intracranial aneurysm (UIA) treatment score (UIATS) model that includes and quantifies key factors involved in clinical decision-making in the management of UIAs and to assess agreement for this model among specialists in UIA management and research. METHODS An international multidisciplinary (neurosurgery, neuroradiology, neurology, clinical epidemiology) group of 69 specialists was convened to develop and validate the UIATS model using a Delphi consensus. For internal (39 panel members involved in identification of relevant features) and external validation (30 independent external reviewers), 30 selected UIA cases were used to analyze agreement with UIATS management recommendations based on a 5-point Likert scale (5 indicating strong agreement). Interrater agreement (IRA) was assessed with standardized coefficients of dispersion (vr*) (vr* = 0 indicating excellent agreement and vr* = 1 indicating poor agreement). RESULTS The UIATS accounts for 29 key factors in UIA management. Agreement with UIATS (mean Likert scores) was 4.2 (95% confidence interval [CI] 4.1-4.3) per reviewer for both reviewer cohorts; agreement per case was 4.3 (95% CI 4.1-4.4) for panel members and 4.5 (95% CI 4.3-4.6) for external reviewers (p = 0.017). Mean Likert scores were 4.2 (95% CI 4.1-4.3) for interventional reviewers (n = 56) and 4.1 (95% CI 3.9-4.4) for noninterventional reviewers (n = 12) (p = 0.290). Overall IRA (vr*) for both cohorts was 0.026 (95% CI 0.019-0.033). CONCLUSIONS This novel UIA decision guidance study captures an excellent consensus among highly informed individuals on UIA management, irrespective of their underlying specialty. Clinicians can use the UIATS as a comprehensive mechanism for indicating how a large group of specialists might manage an individual patient with a UIA.
Resumo:
A semi-automatic segmentation algorithm for abdominal aortic aneurysms (AAA), and based on Active Shape Models (ASM) and texture models, is presented in this work. The texture information is provided by a set of four 3D magnetic resonance (MR) images, composed of axial slices of the abdomen, where lumen, wall and intraluminal thrombus (ILT) are visible. Due to the reduced number of images in the MRI training set, an ASM and a custom texture model based on border intensity statistics are constructed. For the same reason the shape is characterized from 35-computed tomography angiography (CTA) images set so the shape variations are better represented. For the evaluation, leave-one-out experiments have been held over the four MRI set.
Resumo:
Dissecting aortic aneurysm is the hallmark of Marfan syndrome (MFS) and the result of mutations in fibrillin-1, the major constituent of elastin-associated extracellular microfibrils. It is yet to be established whether dysfunction of fibrillin-1 perturbs the ability of the elastic vessel wall to sustain hemodynamic stress by disrupting microfibrillar assembly, by impairing the homeostasis of established elastic fibers, or by a combination of both mechanisms. The pathogenic sequence responsible for the mechanical collapse of the elastic lamellae in the aortic wall is also unknown. Targeted mutation of the mouse fibrillin-1 gene has recently suggested that deficiency of fibrillin-1 reduces tissue homeostasis rather than elastic fiber formation. Here we describe another gene-targeting mutation, mgR, which shows that underexpression of fibrillin-1 similarly leads to MFS-like manifestations. Histopathological analysis of mgR/mgR specimens implicates medial calcification, the inflammatory–fibroproliferative response, and inflammation-mediated elastolysis in the natural history of dissecting aneurysm. More generally, the phenotypic severity associated with various combinations of normal and mutant fibrillin-1 alleles suggests a threshold phenomenon for the functional collapse of the vessel wall that is based on the level and the integrity of microfibrils.
Resumo:
Acknowledgements This study received no specific funding. The study involved the analysis of data collected routinely as part of the national AAA screening programme in Scotland.
Resumo:
Objective: To determine the long term relative survival of all patients who had surgery for abdominal aortic aneurysm in Western Australia during 1985-94.
Resumo:
Abdominal Aortic Aneurism is a disease related to a weakening in the aortic wall that can cause a break in the aorta and the death. The detection of an unusual dilatation of a section of the aorta is an indicative of this disease. However, it is difficult to diagnose because it is necessary image diagnosis using computed tomography or magnetic resonance. An automatic diagnosis system would allow to analyze abdominal magnetic resonance images and to warn doctors if any anomaly is detected. We focus our research in magnetic resonance images because of the absence of ionizing radiation. Although there are proposals to identify this disease in magnetic resonance images, they need an intervention from clinicians to be precise and some of them are computationally hard. In this paper we develop a novel approach to analyze magnetic resonance abdominal images and detect the lumen and the aortic wall. The method combines different algorithms in two stages to improve the detection and the segmentation so it can be applied to similar problems with other type of images or structures. In a first stage, we use a spatial fuzzy C-means algorithm with morphological image analysis to detect and segment the lumen; and subsequently, in a second stage, we apply a graph cut algorithm to segment the aortic wall. The obtained results in the analyzed images are pretty successful obtaining an average of 79% of overlapping between the automatic segmentation provided by our method and the aortic wall identified by a medical specialist. The main impact of the proposed method is that it works in a completely automatic way with a low computational cost, which is of great significance for any expert and intelligent system.
Resumo:
Mode of access: Internet.
Resumo:
Carbon dust drawing on stipple board; Dr. Cameron Haight, University of Michigan Department of Thoracic Surgery