967 resultados para Analog readout
Resumo:
The synthesis of the monomeric building block 13 and its constitutional isomer 12 of a new type of DNA analog, distamycin-NA, is presented (Schemes 1 and 2). This building block consists of a uracil base attached to a thiophene core unit via a biaryl-like axis. Next to the biaryl-like axis on the thiophene chromophore, a carboxy and an amino substituent are located allowing for oligomerization via peptide coupling. The proof of constitution and the conformational preferences about the biaryl-like axis were established by means of X-ray analyses of the corresponding nitro derivatives 10 and 11. Thus, the uracil bases are propeller-twisted relative to the thiophene core, and bidentate H-bonds occur between two uracil bases in the crystals. The two amino-acid building blocks 12 and 13 were coupled to give the dimers 15 and 16 using dicyclohexylcarbodiimide (DCC) in THF/LiCl and DMF, respectively. While the dimer 15 showed no atropisomerism on the NMR time scale at room temperature, its isomer 16 occurred as distinct diastereoisomers due to the hindered rotation around its biaryl-like axis. Variable-temperature 1H-NMR experiments allowed to determine a rotational barrier of 19 ± 1 kcal/mol in 16. The experimental data were complemented by AM1 calculations.
Resumo:
10.1002/hlca.19980810512.abs The synthesis of the Fmoc-protected amino acid 2 is presented. First attempts of amide-bond formation to the homodimer 4 in solution showed only poor coupling yields indicative for the low reactivity of the amino and carboxy groups in the building blocks 1 and 2, respectively (Scheme 1). Best coupling yields were found using dicyclohexylcarbodiimide (DCC) without any additive. The oligomerization of building block 2 adopting the Fmoc ((9H-fluoren-9-ylmethoxy)carbonyl) solid-phase synthesis yielded a mixture of N-terminal-modified distamycin-NA derivatives. By combined HPLC and MALDI-TOF-MS analysis, the N-terminal functional groups could be identified as acetamide and N,N-dimethylformamidine functions, arising from coupling of the N-terminus of the growing chain with residual AcOH or DCC-activated solvent DMF. An improved preparation of building block 2 and coupling protocol led to the prevention of the N-terminal acetylation. However, ‘amidination’ could not be circumvented. A thus isolated tetramer of 2, containing a lysine unit at the C-terminus and a N,N-dimethylformamidine-modified N-terminus, not unexpectedly, showed no complementary base pairing to DNA and RNA, as determined by standard UV-melting-curve analysis.
Resumo:
ARGONTUBE is a liquid argon time projection chamber (TPC) with an electron drift length of up to 5 m equipped with cryogenic charge-sensitive preamplifiers. In this work, we present results on its performance, including a comparison of the new cryogenic charge-sensitive preamplifiers with the previously used room-temperature-operated charge preamplifiers.
Resumo:
OBJECTIVES Readout-segmented echo planar imaging (rs-EPI) significantly reduces susceptibility artifacts in diffusion-weighted imaging (DWI) of the breast compared to single-shot EPI but is limited by longer scan times. To compensate for this, we tested a new simultaneous multi-slice (SMS) acquisition for accelerated rs-EPI. MATERIALS AND METHODS After approval by the local ethics committee, eight healthy female volunteers (age, 38.9±13.1 years) underwent breast MRI at 3T. Conventional as well as two-fold (2× SMS) and three-fold (3× SMS) slice-accelerated rs-EPI sequences were acquired at b-values of 50 and 800s/mm(2). Two independent readers analyzed the apparent diffusion coefficient (ADC) in fibroglandular breast parenchyma. The signal-to-noise ratio (SNR) was estimated based on the subtraction method. ADC and SNR were compared between sequences by using the Friedman test. RESULTS The acquisition time was 4:21min for conventional rs-EPI, 2:35min for 2× SMS rs-EPI and 1:44min for 3× SMS rs-EPI. ADC values were similar in all sequences (mean values 1.62×10(-3)mm(2)/s, p=0.99). Mean SNR was 27.7-29.6, and no significant differences were found among the sequences (p=0.83). CONCLUSION SMS rs-EPI yields similar ADC values and SNR compared to conventional rs-EPI at markedly reduced scan time. Thus, SMS excitation increases the clinical applicability of rs-EPI for DWI of the breast.
Resumo:
The surface of Mars is host to many regions displaying polygonal crack patterns that have been identified as potential desiccation cracks. These regions are mostly within Noachian-aged terrains and are closely associated with phyllosilicate occurrences and smectites in particular. We have built a laboratory setup that allows us to carry out desiccation experiments on Mars-analog materials in an effort to constrain the physical and chemical properties of sediments that display polygonal cracks. The setup is complemented by a pre-existing simulation chamber that enables the investigation of the spectral and photometric properties of analog materials in Mars-like conditions. The initial experiments that have been carried out show that (1) crack patterns are visible in smectite-bearing materials in varying concentrations down to similar to 10% smectite by weight, (2) chlorides, and potentially other salts, delay the onset of cracking and may even block it from occurring entirely, and (3) the polygonal patterns, while being indicative of the presence of phyllosilicates, cannot be used to differentiate between various phyllosilicate-bearing deposits. However, their size-scale and morphology yields important information regarding their thickness and the hydrological conditions at the time of formation. Furthermore, the complementary spectral measurements for some of the analog samples shows that crack patterns may develop in materials with such low concentrations of smectites that would not be expected to be identified using remote-sensing instruments. This may explain the presence of polygonal patterns on Mars in sediments that lack spectral confirmation of phyllosilicates. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
It is clear that in the near future much broader transmissions in the HF band will replace part of the current narrow band links. Our personal view is that a real wide band signal is infeasible in this environment because the usage is typically very intensive and may suffer interferences from all over the world. Therefore, we envision that dynamic multiband transmissions may provide better satisfactory performance. From the very beginning, we observed that real links with our broadband transceiver suffered interferences out of our multiband but within the acquisition bandwidth that degrade the expected performance. Therefore, we concluded that a mitigation structure is required that operates on severely saturated signals as the interference may be of much higher power. In this paper we address a procedure based on Higher Order Crossings (HOC) statistics that are able to extract most of the signal structure in the case where the amplitude is severely distorted and allows the estimation of the interference carrier frequency to command a variable notch filter that mitigates its effect in the analog domain.
Resumo:
We envision that dynamic multiband transmissions taking advantage of the receiver diversity (even for collocated antennas with different polarization or radiation pattern) will create a new paradigm for these links guaranteeing high quality and reliability. However, there are many challenges to face regarding the use of broadband reception where several out of band (with respect to multiband transmission) strong interferers, but still within the acquisition band, may limit dramatically the expected performance. In this paper we address this problem introducing a specific capability of the communication system that is able to mitigate these interferences using analog beamforming principles. Indeed, Higher Order Crossing (HOCs) joint statistics of the Single Input ? Multiple Output (SIMO) system are shown to effectively determine the angle on arrival of the wavefront even operating over highly distorted signals.