173 resultados para Amphipod
Resumo:
Early summer in the Arctic with extensive ice melt and break-up represents a dramatic change for sympagic-pelagic fauna below seasonal sea ice. As part of the International Polar Year-Circumpolar Flaw Lead system study (IPY-CFL), this investigation quantified zooplankton in the meltwater layer below landfast ice and remaining ice fauna below melting ice during June (2008) in Franklin Bay and Darnley Bay, Amundsen Gulf, Canada. The ice was in a state of advanced melt, with fully developed melt ponds. Intense melting resulted in a 0.3- to 0.5-m-thick meltwater layer below the ice, with a strong halocline to the Arctic water below. Zooplankton under the ice, in and below the meltwater layer, was sampled by SCUBA divers. Dense concentrations (max. 1,400 ind./m**3) of Calanus glacialis were associated with the meltwater layer, with dominant copepodid stages CIV and CV and high abundance of nauplii. Less abundant species included Pseudocalanus spp., Oithona similis and C. hyperboreus. The copepods were likely feeding on phytoplankton (0.5-2.3 mg Chl-a/m**3) in the meltwater layer. Ice amphipods were present at low abundance (<10 ind./m**2) and wet biomass (<0.2 g/m**2). Onisimus glacialis and Apherusa glacialis made up 64 and 51% of the total ice faunal abundance in Darnley Bay and Franklin Bay, respectively. During early summer, the autochthonous ice fauna becomes gradually replaced by allochthonous zooplankton, with an abundance boom near the meltwater layer. The ice amphipod bust occurs during late stages of melting and break-up, when their sympagic habitat is diminished then lost.
Resumo:
In order to investigate the diversity of diet composition in macrobenthic peracarid crustaceans from the Antarctic shelf and deep sea, the fatty acid (FA) composition of different species belonging to the orders Isopoda, Amphipoda, Cumacea and Tanaidacea was analysed. Multivariate analyses of the FA composition confirmed general differences between the orders, but also distinct differences within these orders. To gain information on the origin of the FAs found, the potential food sources sediment, POM and foraminiferans were included in the study. Most of the analysed amphipod species displayed high 18:1(n-9)-18:1(n-7) ratios, widely used as an indicator for a carnivorous component in the diet. Cumaceans were characterised by increased phytoplankton FA markers such as 20:5(n-3) (up to 29% of total FAs), suggesting a diet based on phytodetritus. High values of the FA 20:4(n-6) were found in some munnopsid isopods (up to 21% of total FAs) and some tanaidacean species (up to 19% of total FAs). 20:4(n-6) also occurred in high proportions in some foraminiferan samples (up to 21% of total fatty acids), but not in sediment and POM, possibly indicating the ingestion of foraminiferans by some peracarid crustaceans.
Resumo:
Life-cycle characteristics of the free-swimming lysianassoid amphipod Cyclocaris guilelmi were investigated and compared to those of other regularly appearing amphipods in the Arctic deep-sea community. In this context we analysed time-series data of meso- and bathypelagic amphipods collected as swimmers in moored sediment traps from 2004 to 2008 at the deep-sea long-term observatory HAUSGARTEN (79°N/4°E) in the eastern Fram Strait, Arctic Ocean. Six mesopelagic and three bathypelagic deep-sea amphipod species regularly occurred in the traps. The lysianassoid C. guilelmi showed a stable interannual population size and seasonal peaks in its occurrence from August to February during the five-year sampling period. The investigation of its population structure and reproduction ecology indicated year-round breeding behavior of this species. Up to 4 cohorts consisting mainly of juvenile and female C. guilelmi were observed. We conclude that C. guilelmi plays an important role within the Arctic amphipod deep water community.
Resumo:
The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate (N=24-65 per station) 0.25 m**2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind/l (median 0.8 ind/l). In level ice, low ice algal pigment concentrations (<0.1-15.8 µg Chl a /l), low brine salinities (1.8-21.7) and flushing from the melting sea ice likely explain the low ice meiofauna concentrations. Higher abundances of Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind/l, median 40 ind/l), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind/m**2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of enhanced summer ice melt. Previous estimates of Arctic sea ice meiofauna and under-ice amphipods on regional and pan-Arctic scales likely underestimate abundances at least in summer because they typically do not include pressure ridges.
Resumo:
Lake Baikal, the world's most voluminous freshwater lake, has experienced unprecedented warming during the last decades. A uniquely diverse amphipod fauna inhabits the littoral zone and can serve as a model system to identify the role of thermal tolerance under climate change. This study aimed to identify sublethal thermal constraints in two of the most abundant endemic Baikal amphipods, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, and Gammarus lacustris, a ubiquitous gammarid of the Holarctic. As the latter is only found in some shallow isolated bays of the lake, we further addressed the question whether rising temperatures could promote the widespread invasion of this non-endemic species into the littoral zone. Animals were exposed to gradual temperature increases (4 week, 0.8 °C/d; 24 h, 1 °C/h) starting from the reported annual mean temperature of the Baikal littoral (6 °C). Within the framework of oxygen- and capacity-limited thermal tolerance (OCLTT), we used a nonlinear regression approach to determine the points at which the changing temperature-dependence of relevant physiological processes indicates the onset of limitation. Limitations in ventilation representing the first limits of thermal tolerance (pejus (= "getting worse") temperatures (Tp)) were recorded at 10.6 (95% confidence interval; 9.5, 11.7), 19.1 (17.9, 20.2), and 21.1 (19.8, 22.4) °C in E. verrucosus, E. cyaneus, and G. lacustris, respectively. Field observations revealed that E. verrucosus retreated from the upper littoral to deeper and cooler waters once its Tp was surpassed, identifying Tp as the ecological thermal boundary. Constraints in oxygen consumption at higher than critical temperatures (Tc) led to an exponential increase in mortality in all species. Exposure to short-term warming resulted in higher threshold values, consistent with a time dependence of thermal tolerance. In conclusion, species-specific limits to oxygen supply capacity are likely key in the onset of constraining (beyond pejus) and then life-threatening (beyond critical) conditions. Ecological consequences of these limits are mediated through behavioral plasticity in E. verrucosus. However, similar upper thermal limits in E. cyaneus (endemic, Baikal) and G. lacustris (ubiquitous, Holarctic) indicate that the potential invader G. lacustris would not necessarily benefit from rising temperatures. Secondary effects of increasing temperatures remain to be investigated.
Resumo:
Time series length-frequency data are presented for Themisto amphipods collected as swimmers by moored sediment traps since 2000 at the AWI deep-sea observatory HAUSGARTEN (79°N/4°E) in the eastern Fram Strait. Amphipod occurrences increased significantly from 2000 to 2009 at 200-300 m depth, and the North Atlantic species Themisto compressa was continuously present in the samples starting in 2004. We present year-round records of large adult Themisto amphipods, including the appearance of Themisto libellula with a total body length of up to 56.7 mm and juveniles starting from 4.0 mm. The length of Themisto abyssorum ranged from 4.2 to 25.6 mm, whereas it varied for Themisto compressa from 8.8 to 24.4 mm. Length-frequency analysis indicated a life span of 2 years for T. abyssorum and at least 3 years for T. libellula. The absence of juveniles for T. compressa suggested its reproduction in southern subarctic areas and its occasional northward migration with warmer Atlantic water into the eastern Fram Strait. The seasonal and long-term size structures of the three pelagic species were consistent over the course of the study, indicating no changes occurred in cohort development due to increasing abundances or warming water temperatures.
Resumo:
Shorthorn sculpin (Myoxocephalus scorpius) from Frobisher Bay, Baffin Island, is a slow growing long-lived species. A wide range of diet items were present in the stomachs of the shorthorn sculpins sampled but 2-3 diet items (amphipod species) comprised 99.5 % of total food consumed. These amphipods were present in the stomachs in similar proportions among all age classes of shorthorn sculpin. Several new host records for parasites were reported and mean numbers of parasite species increased with shorthorn sculpin age. The increased diversity of parasite species and higher d15N values in older/larger individuals suggest that their diets were more diverse and the prey items consumed had higher d15N values. By contrast, the value of d13C in dominant diet items masked the d13C values of minor diet items. We conclude that parasites and stable isotope values provide complementary data on feeding patterns of the shorthorn sculpin. The ubiquitous marine acanthocephalan, Echinorhynchus gadi, was found at high prevalences (87-100 %) and mean intensities (28-35), and were localized in the midgut. In contrast to other studies on acanthocephalans, E. gadi did not influence fish condition as measured by condition factor, liver somatic and gonado-somatic indices.