963 resultados para Amine ligands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enantiopure intermediates are of high value in drug synthesis. Biocatalysis alone or combined with chemical synthesis provides powerful tools to access enantiopure compounds. In biocatalysis, chemo-, regio- and enantioselectivity of enzymes are combined with their inherent environmentally benign nature. Enzymes can be applied in versatile chemical reactions with non-natural substrates under synthesis conditions. Immobilization of an enzyme is a crucial part of an efficient biocatalytic synthesis method. Successful immobilization enhances the catalytic performance of an enzyme and enables its reuse in successive reactions. This thesis demonstrates the feasibility of biocatalysis in the preparation of enantiopure secondary alcohols and primary amines. Viability and synthetic usability of the studied biocatalytic methods have been addressed throughout this thesis. Candida antarctica lipase B (CAL-B) catalyzed enantioselective O-acylation of racemic secondary alcohols was successfully incorporated with in situ racemization in the dynamic kinetic resolution, affording the (R)-esters in high yields and enantiopurities. Side reactions causing decrease in yield and enantiopurity were suppressed. CAL-B was also utilized in the solvent-free kinetic resolution of racemic primary amines. This method produced the enantiomers as (R)-amides and (S)-amines under ambient conditions. An in-house sol-gel entrapment increased the reusability of CAL-B. Arthrobacter sp. omega-transaminase was entrapped in sol-gel matrices to obtain a reusable catalyst for the preparation enantiopure primary amines in an aqueous medium. The obtained heterogeneous omega-transaminase catalyst enabled the enantiomeric enrichment of the racemic amines to their (S)-enantiomers. The synthetic usability of the sol-gel catalyst was demonstrated in five successive preparative kinetic resolutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular matrix proteins and cell adhesion receptors (integrins) play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp) motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been demonstrated that exposure to a variety of stressful experiences enhances fearful reactions when behavior is tested in current animal models of anxiety. Until now, no study has examined the neurochemical changes during the test and retest sessions of rats submitted to the elevated plus maze (EPM). The present study uses a new approach (HPLC) by looking at the changes in dopamine and serotonin levels in the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens in animals upon single or double exposure to the EPM (one-trial tolerance). The study involved two experiments: i) saline or midazolam (0.5 mg/kg) before the first trial, and ii) saline or midazolam before the second trial. For the biochemical analysis a control group injected with saline and not tested in the EPM was included. Stressful stimuli in the EPM were able to elicit one-trial tolerance to midazolam on re-exposure (61.01%). Significant decreases in serotonin contents occurred in the prefrontal cortex (38.74%), amygdala (78.96%), dorsal hippocampus (70.33%), and nucleus accumbens (73.58%) of the animals tested in the EPM (P < 0.05 in all cases in relation to controls not exposed to the EPM). A significant decrease in dopamine content was also observed in the amygdala (54.74%, P < 0.05). These changes were maintained across trials. There was no change in the turnover rates of these monoamines. We suggest that exposure to the EPM causes reduced monoaminergic neurotransmission activity in limbic structures, which appears to underlie the "one-trial tolerance" phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytotoxic activity of amino (3a-e), aza-1-antraquinone (4a-e) lapachol derivatives against Ehrlich carcinoma and human K562 leukemia cells was investigated. Cell viability was determined using MTT assay, after 48 (Ehrlich) or 96 h (K562) of culture, and vincristine (for K562 leukemia) and quercetin (for Ehrlich carcinoma) were used as positive controls. The results showed dose-dependent growth-inhibiting activities and that the amino derivatives were active against the assayed cells, whereas the 4a-e derivatives were not. The allylamine derivative 3a was the most active against Ehrlich carcinoma, with IC50 = 16.94 ± 1.25 µM, and against K562 leukemia, with IC50 = 14.11 ± 1.39 µM. The analogous lawsone derivative, 5a, was also active against Ehrlich carcinoma (IC50 = 23.89 ± 2.3 µM), although the 5d and 5e derivatives showed lower activity. The interaction between 3a-d and calf thymus DNA was investigated by fluorimetric titration and the results showed a hyperchromic effect indicating binding to DNA as presented of ethidium bromide, used as positive control. The inhibitory action on DNA-topoisomerase II-a was also evaluated by a relaxation assay of supercoiled DNA plasmid, and the etoposide (200 µM) was used as positive control. Significant inhibitory activities were observed for 3a-d at 200 µM and a partial inhibitory action was observed for lapachol and methoxylapachol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the correlation between total nitrite/nitrate concentrations (NOx) and the kinetic parameters of monoamine oxidase enzymes (MAO-A and MAO-B) and semicarbazide-sensitive amine oxidase (SSAO) in human mesenteric arteries. Arteries were from non-diabetic and type 2 diabetic patients with sigmoid or rectum carcinoma for whom surgery was the first option and who were not exposed to neo-adjuvant therapy. Segments of human inferior mesenteric arteries from non-diabetic (61.1 ± 8.9 years old, 7 males and 5 females, N = 12) and type 2 diabetic patients (65.8 ± 6.2 years old, 8 males and 4 females, N = 12) were used to determine NOx concentrations and the kinetic parameters of MAO-A, MAO-B and SSAO by the Griess reaction and by radiochemical assay, respectively. The NOx concentrations in arteries from diabetic patients did not differ significantly from those of the non-diabetic group (10.28 ± 4.61 vs 10.71 ± 4.32 nmol/mg protein, respectively). In the non-diabetic group, there was a positive correlation between NOx concentrations and MAO-B parameters: Km (r = 0.612, P = 0.034) and Vmax (r = 0.593, P = 0.042), and a negative correlation with the SSAO parameters: Km (r = -0.625, P = 0.029) and Vmax (r = -0.754, P = 0.005). However, in the diabetic group no correlation was found between NOx concentrations and the three kinetic parameters of the enzymes. These results suggest an important function of sympathetic nerves and vascular NOx concentrations in arteries of non-diabetic patients. Thus, these results confirm the importance of a balance between oxidants and antioxidants in the maintenance of vascular homeostasis to prevent oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct air capture technologies extract CO2 from air at a concentration of as low as 400ppm. The captured CO2 can be used for the production of synthetic methane or liquid fuels. In the literature survey of this thesis, results related to direct air capture by using solid sorbents are presented and critically discussed. In the experimental part, a proprietary amine functionalized resin is characterized for direct air capture. Structural comparison is also made to a commercial resin of similar type. Based on the literature survey, the most important parameters in direct air capture process are low adsorption and desorption temperatures, good cyclic stability in dry and humid conditions, high CO2 outlet purity and a high working capacity. Primary amine functionalized solid sorbents are found to often have good qualities for direct air capture, but overall process performance is rarely studied exhaustively. Based on FTIR spectra, both resin adsorbents are found to be consisted of polystyrene functionalized with primary amine, and capture CO2 by forming carbamate. The commercial resin is more porous, has a slightly higher particle size and contains fewer impurities. Important physical parameters are gained of the proprietary resin, such as internal porosity and median particle size. The resin’s amine group is found to endure thermal treatment reasonably well. CO2 adsorption capacity gained by thermal gravimetry from 400ppm CO2 is highest at 25oC, and is found to be reasonable compared to values presented in literature. Thus, the resin is stated to exhibit promising qualities for direct air capture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work to be presented herein illustrates several important facts. First, the synthesis of BIBOL (19), a 1,4-diol derived from the monoterpene camphor has allowed us to demonstrate that oxidative dimerizations of enolates can, and do proceed with nearly complete diastereoselectivity under kinetically controlled conditions. The yield of BIBOL is now 50% on average, with a 10% yield of a second diastereomer, which is likely the result of a non-kinetic hydride reduction, thereby affording the epimeric alcohol, 20, coupled on the exo face of camphor. This implies the production of 60% of a single coupling diastereomer. No other diastereomers from the reduction were observed. The utility of BEBOL has been illustrated in early asymmetric additions of diethylzinc to aryl aldehydes, with e.e.'s as high as 25-30%. '^' To further the oxidative coupling work, the same methodology which gave rise to BIBOL was applied to the chiral pool ketone, menthone. Interestingly, this gave an excellent yield of the a-halohydrin (31), which is the result of a chlorination of menthone. This result clearly indicates the high stereoselectivity of the process regardless of the outcome, and has illustrated an interesting dichotomy between camphor and menthone. The utility of the chlorination product as a precursor other chiral ligands is currently being investigated. > ' Finally, a new series of 1,3-diols as well as a new aminoalcohol have successfully been synthesized from highly diastereoselective aldol/mannich reactions. Early studies have indicated their potential in asymmetric catalysis, while employing pi-stack interactions as a means of controlling enantioselective aldol reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To further understand in vivo localization and trafficking of a-tocopherol (a-Toe), the most biologically active form of vitamin E, between lipid environments, tocopherols are required that can be followed by teclu1iques such as confocal microscopy and fluorescence resonance energy transfer (FRET) assays. To this end, sixteen fluorescent analogues of a-tocopherol (la-d [(1)anthroy loxy -a-tocopherols, A O-a-Toes], 2a-d [w-nitro benzoxadiazole-a-tocopherols, NBD-aToes], 3a-d [w-dansyl-a-tocopherols, DAN-a-Toes], and 4a-d [w-N-methylanthranilamide-atocopherols, NMA-a-TocsD were prepared by substituting fluorescent labels at the terminus of w-functionalized alkyl chains extending from C-2 of the chroman ring while retaining key binding features of the natural ligand. These compounds were prepared starting from (S)-Trolox® acid VIa esterification, protection, and reduction producing the silyl-protected (S)-Trolox aldehyde that was coupled using Wittig chemistry to different w-hydroxyalkylphosphonium bromides. Reduction of the alkene generated the w-hydroxy functionalized 2-n-alkyl intermediates 9a-d having the necessary 2R stereochemistry. A series of functional group manipulations including mesylation, substitution with azide, and hydride reduction provided w-amino functionalized intermediates 12a-d as well. Coupling intermediates 9a-d and 12a-d with the selected fluorophores (9- anthracene carboxylic acid, 4-chloro-7-nitrobenz-2-oxa-l,3-diazole, 5- dimethylaminonapthalene-l-sulfonyl chloride, and I-methyl-2H-3,1-benzoxazine-2,4(1H)dione), followed by deprotection of the phenolic silyl group, gave the desired fluorescent ligands la-d, 2a-d, 3a-d and 4a-d in good yield. Assessment of their binding affinities with recombinant human a-tocopherol transfer protein (ha-TTP) utilizing fluorescent titration binding assays identified competent ligands for further use in protein studies. Compounds Id (C9-AO-a-Toc) and 2d (C9-NBD-a-Toc) both having nonyl alkyl chain extensions between the chromanol and fluorophore were shown to bind specifically to ha-TTP with dissociation constants (KdS) of approximately 280 nM and 55 nM respectively, as compared to 25 nM for the natural ligand 2R,4'R,^'R-a-tocophQxoL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis was to demonstrate the potential of fast atom bombardment mass spectrometry (FABMS) as a probe of condensed phase systems and its possible uses for the study of hydrogen bonding. FABMS was used to study three different systems. The first study was aimed at investigating the selectivity of the ligand tris(3,6-dioxaheptyl) amine (tdoha) for the alkali metal cations. FABMS results correlated well with infrared and nmr data. Systems where a crown ether competed with tdoha for a given alkali metal cation were also investigated by fast atom bombardment. The results were found to correlate with the cation affinity of tdoha and the ability of the crown ether to bind the cation. In the second and third studies, H-bonded systems were investigated. The imidazole-electron donor complexes were investigated and FABMS results showed the expected H-bond strength of the respective complexes. The effects of concentration, liquid matrix, water content, deuterium exchange, and pre-ionization of the complex were also investigated. In the third system investigated, the abundance of the diphenyl sulfone-ammonium salt complexes (presumably H-bonded) in the FABMS spectrum were found to correlate with qualitative considerations such as steric hindrance and strength of ion pairs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytoch ro me c oxidase (ferrocytochrome c : 02 oxidoreductase ; EC 1.9. 3.1) is the terminal enzyme in the mitochondrial electron transport chain, catalyzing the transfer of electrons from ferrocytochrome c to molecular oxygen. The effects of two large amphiphilic molecules .. valinomycin and dibucaine upon the spectra of the isolated enzyme and upon the activity of both isolated enzyme and enzyme in membrane systems are investigated by using spectrophotometric and oxygen electrode techniques. The results show that both valinomycin and dibucaine change the Soret region of the spectrum and cause a partial inhibition in a concentration range higher than that in which they act as ionophores. It is concluded that both valinomycin and dibucain~ binding induce a conformational change of the protein structure which modifies the spectrum of the a3 CUB centre and diminishes the rate of electron transfer between cytochrome a and the binuclear centre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New and robust methodologies have been designed for palladium-catalyzed crosscoupling reactions involving·a novel·class oftertiary phosphine ligand incorporating a phospha-adamantane framework. It has been realized that bulky, electron-rich phosphines, when used as ligands for palladium, allow for cross-coupling reactions involving even the less reactive aryl halide substrates with a variety of coupling partners. In an effort to design new ligands suitable for carrying out cross-coupling transformations, the secondary phosphine, 1,3,5,7-tetramethyl-2,4,8-trioxa-6phosphaadamantane was converted into a number of tertiary phosphine derivatives. The ability of these tertiary phosphaadamantanes to act as effective ligands in the palladiumcatalyzed Suzuki cross-coupling was examined. 1,3,5,7-Tetramethyl-6-phenyl-2,4,8trioxa- 6-phosphaadamantane (PA-Ph) used in combination with Pdz(dba)3permitted the reaction of an array of aryl iodides, bromides and chlorides with a variety arylboronic acids to give biaryls in good to excellent yields. Subsequently, palladium complexes of PA-Ph were prepared and isolated in high yields as air stable palladium bisphosphine complexes. Two different kinds of crystals were isolated and upon characterization revealed two complexes, Pd(PA-Ph)z.dba and Pd(PA-Ph)zOz. Preliminary screening for their catalytic activity indicated that the former is more reactive than the latter. Pd(PAPh) z.dba was applied as the catalyst for Sonogashira cross-coupling reactions of aryl iodides and bromides and in the reactions of aryl bromides and chlorides with ketones to give a-arylated ketones at mild temperatures in high yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cocondensation of nickel with a number of unsaturated ligands was studied, as was the cocondensation with a number of mixed ligand systems. Enamines were found not to react with nickel while acrylonitrile was polymerized. In the mixed ligand syst.ems different products were obtained than when the ligands were cocondensed individually. Cocondensations of benzyl halide/allyl halide mixtures gave unstable products that were not observed when the halides were cocondensed individually. The effect of Kao-Wool insulation on nickel/benzyl halide cocondensations was found to be significant. Kao-Wool caused the bulk of the benzyl halide to be polymeri zed to a number of poly-benzylic species. An alkali metal reactor was designed for the evaporation of sodium and potassium atoms into cold solutions of metal halide and an or ganic substrate. This apparatus was used to synthesize Ni(P¢3 )3' but proved unsuccessful for synthesizing a nickel-enamine compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New and robust methodologies have been designed for palladiumcatalyzed cross-coupling reactions involving a library of novel tertiary phosphine ligands incorporating a phospha-adamantane framework. The secondary phosphine, l,3,5,7-tetramethyl-2,4,8-trioxa-6-phospha-adamantane was converted into a small library of tertiary phosphine derivatives and the ability of these tertiary phosphaadamantanes to act as effective ligands in the palladium-catalyzed amination reaction and p-alkyl-Suzuki cross-coupling was examined. l,3,5,7-Tetramethyl-6- phenyl-2,4,8-trioxa-6-phosphaadamantane (PA-Ph) used in combination with Pd2(dba)3 CHCI3 facilitated the reaction of an array of aryl iodides, bromides and chlorides with a variety secondary and primary amines to give tertiary and secondary amines respectively in good to excellent yields. 8-(2,4-Dimethoxyphenyl)- l,3,5,7-tetramethyl-2,4,6-trioxa-8-phospha-tricyclo[3.3.1.1*3,7*]decane used in combination with Pd(0Ac)2 permitted the reaction of an array of alkyl iodides, and bromides with a variety aryl boronic acids and alkyl 9-BBN compounds in good to excellent yields. Subsequent to this work, the use of phosphorous based ionic liquids, specifically tetradecyltrihexylphosphonium chloride (THPC), in the Heck reaction provided good to excellent yields in the coupling of aryl iodides and bromides with a variety of olefins.