953 resultados para Ambient temperature


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The inhibiting effect of COads on platinum-based anodes is a major problem in the development of ambient temperature, polyelectrolyte membrane-type fuel cells. One of the unusual features of the response for the oxidative removal of the species in question is that the response observed for this reaction in the positive sweep is highly dependent on the CO admission potential, for example, when the COads is formed in the Hads region it undergoes oxidation at unusually low potentials. Such behaviour is attributed here to hydrogen activation of the platinum surface, with the result that oxide mediators (and COads oxidation) occurs at an earlier stage of the positive sweep. It is also demonstrated, for both platinum and gold in acid solution, that dramatic premonolayer oxidation responses may be observed following suitable preactivation of the electrode surfaces. It is suggested that the defect state of a solid electrode surface is an important variable whose investigation may yield improved fuel cell anode performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tubular members have become progressively more popular due to excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, a large number of such structures are found structurally deficient due to reduction of strength when they expose to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural members are in high demands. In recent times Carbon Fibre Reinforced Polymers (CFRP) composites appears to be an excellent solution to enhance the load carrying capacity and serviceability of steel structures because of its superior physical and mechanical properties. However, the durability of such strengthening system under cold environmental condition has not yet been well documented to guide the engineers. This paper presents the findings of a study conducted to enhance the bond durability of CFRP strengthened steel tubular members by treating steel surface using epoxy based adhesion promoter under cold weather subjected to bending. The experimental program consisted of six number of CFRP strengthened specimens and one bare specimen. The sand blasted surface of the three specimens to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature and cold weather (3oC) for three and six months period of time. The beams were then loaded to failure under four point bending. The structural response of each specimen was predicted in terms of failure mode, failure load and mid-span deflection. The research findings show that the cold weather immersion had an adverse effect on durability of CFRP strengthened structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in elastic range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Newell (1985, 1986) identified the importance of interacting constraints on the emergent behaviours of learners or performers in sport as they assemble functional states of movement organisation in achieving task goals. Constraints, related to the person, task and environment, were defined as ‘boundaries or features that limit motion of the entity under consideration at any moment in time’ (Newell, 1986, p.347). Personal (or organismic) constraints include factors such as individual anthropometrics (height, weight, and limb lengths), fitness (e.g., strength, speed, aerobic capacity, and flexibility), mental skills (e.g. concentration, confidence, emotional control and motivation), perceptual and decisionmaking skills (e.g., recognising patterns of play, anticipation by reading the movements of opponents) and personality factors (e.g., risk taking or conservative behaviours). Newell (1986, p.350) distinguished between general environmental constraints, such as gravity, ambient temperature, natural light and altitude and task constraints, which are task specific and concerned with the goals of a specific activity. More recently, socio-cultural constraints (e.g., family support, cultural expectations and access to facilities) have also been considered as environmental constraints. Application of the constraints framework to the study of sport performance has led to task constraints being defined to include factors such as rules of games, equipment used, boundary playing areas and markings, nets and goals, the number of...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Lesser Grain Borer is a major pest of stored grain with a global distribution. This project has, for the first time recorded this pest throughout broad spatial areas, tens of kilometres from grain production or storage. Statistical analysis revealed that different factors such as ambient temperature and the availability of food resources affect R. dominica differently between different habitats. This suggests that, contrary to the prevailing view, this pest is not solely dependent on stored wheat and can continue to persist throughout a range of habitats. These findings have important management implications for Australia's wheat industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zero valent iron (ZVI) was prepared by reducing natural goethite (NG-ZVI) and synthetic goethite (SG-ZVI) in hydrogen at 550 °C. XRD, TEM, FESEM/EDS and specific surface area (SSA) and pore analyser were used to characterize goethites and reduced goethites. Both NG-ZVI and SG-ZVI with a size of nanoscale to several hundreds of nanometers were obtained by reducing goethites at 550 °C. The reductive capacity of the ZVIs was assessed by removal of Cr(VI) at ambient temperature in comparison with that of commercial iron powder (CIP). The effect of contact time, initial concentration and reaction temperature on Cr(VI) removal was investigated. Furthermore, the uptake mechanism was discussed according to isotherms, thermodynamic analysis and the results of XPS. The results showed that SG-ZVI had the best reductive capacity to Cr(VI) and reduced Cr(VI) to Cr(III). The results suggest that hydrogen reduction is a good approach to prepare ZVI and this type of ZVI is potentially useful in remediating heavy metals as a material of permeable reaction barrier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH3C CCH3) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH3 loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP + 2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C-4 side-chain, followed by cyclization and/or low-energy H atom beta-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph center dot)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH3 loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5nm to 7μm. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250nm to 7μm and 5 to 10nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD4, at ambient temperature. In some coals most of the small (~10nm) pores were found to be inaccessible to CD4 on the time scale of the measurement (~30min–16h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total pores that was inaccessible was not rank dependent. In the Australian coals, at the 10nm to 50nm size scales the pores in inertinites appeared to be completely accessible to CD4, whereas the pores in the vitrinite were about 75% inaccessible. Unlike the results for total porosity that showed no regional effects on relationships between porosity and coal properties, clear regional differences in the relationships between fraction of closed porosity and coal properties were found. The 10 to 50nm-sized pores of inertinites of the US and Polish coals examined appeared less accessible to methane than those of the inertinites of Australian coals. This difference in pore accessibility in inertinites may explain why empirical relationships between fluidity and coking properties developed using Carboniferous coals do not apply to Australian coals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various models for the crystal structure of hydronium jarosite were determined from Rietveld refinements against neutron powder diffraction patterns collected at ambient temperature and also single-crystal X-ray diffraction data. The possibility of a lower symmetry space group for hydronium jarosite that has been suggested by the literature was investigated. It was found the space group is best described as R3¯m, the same for other jarosite minerals. The hydronium oxygen atom was found to occupy the 3¯m site (3a Wyckoff site). Inadequately refined hydronium bond angles and bond distances without the use of restraints are due to thermal motion and disorder of the hydronium hydrogen atoms across numerous orientations. However, the acquired data do not permit a precise determination of these orientations; the main feature up/down disorder of hydronium is clear. Thus, the highest symmetry model with the least disorder necessary to explain all data was chosen: The hydronium hydrogen atoms were modeled to occupy an m (18 h Wyckoff site) with 50 % fractional occupancy, leading to disorder across two orientations. A rigid body description of the hydronium ion rotated by 60° with H–O–H bond angles of 112° and O–H distances of 0.96 Å was optimal. This rigid body refinement suggests that hydrogen bonds between hydronium hydrogen atoms and basal sulfate oxygen atoms are not predominant. Instead, hydrogen bonds are formed between hydronium hydrogen atoms and hydroxyl oxygen atoms. The structure of hydronium alunite is expected to be similar given that alunite supergroup minerals are isostructural.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold-formed steel members are widely used in residential, industrial and commercial buildings as primary load-bearing elements. During fire events, they will be exposed to elevated temperatures. If the general appearance of the structure is satisfactory after a fire event then the question that has to be answered is how the load bearing capacity of cold-formed steel members in these buildings has been affected. Hence after such fire events there is a need to evaluate the residual strength of these members. However, the post-fire behaviour of cold-formed steel members has not been investigated in the past. This means conservative decisions are likely to be made in relation to fire exposed cold-formed steel buildings. Therefore an experimental study was undertaken to investigate the post-fire mechanical properties of cold-formed steels. Tensile coupons taken from cold-formed steel sheets of three different steel grades and thicknesses were exposed to different elevated temperatures up to 800 oC, and were then allowed to cool down to ambient temperature before they were tested to failure. Tensile coupon tests were conducted to obtain their post-fire stress-strain curves and associated mechanical properties (yield stress, Young’s modulus, ultimate strength and ductility). It was found that the post-fire mechanical properties of cold-formed steels are reduced below the original ambient temperature mechanical properties if they had been exposed to temperatures exceeding 300 oC. Hence a new set of equations is proposed to predict the post-fire mechanical properties of cold-formed steels. Such post-fire mechanical property assessments allow structural and fire engineers to make an accurate prediction of the safety of fire exposed cold-formed steel buildings. This paper presents the details of this experimental study and the results of post-fire mechanical properties of cold-formed steels. It also includes the results of a post-fire evaluation of cold-formed steel walls.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Singapore is located at the equator, with abundant supply of solar radiation, relatively high ambient temperature and relative humidity throughout the year. The meteorological conditions of Singapore are favourable for efficient operation of solar energy based systems. Solar assisted heat pump systems are built on the roof-top of National University of Singapore’s Faculty of Engineering. The objectives of this study include the design and performance evaluation of a solar assisted heat-pump system for water desalination, water heating and drying of clothes. Using MATLAB programming language, a 2-dimensional simulation model has been developed to conduct parametric studies on the system. The system shows good prospect to be implemented in both industrial and residential applications and would give new opportunities in replacing conventional energy sources with green renewable energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The contamination of electrical insulators is one of the major contributors to the risk of operation outages in electrical substations, especially in coastal zones with high salinity levels and atmospheric pollution. By using the measurement of leakage-currents, which is one of the main indicators of contamination in insulators, this work seeks to the determine the correlation with climatic variables, such as ambient temperature, relative humidity, solar irradiance, atmospheric pressure, and wind speed and direction. The results obtained provide an input to the behaviour of the leakage current under atmospheric conditions that are particular to the Caribbean coast of Colombia. Spearman’s rank correlation coefficients and principal component analysis are utilised to determine the significant relationships among the different variables under consideration. The necessary information for the study was obtained via historical databases of both atmospheric variables and the leakage current measured in over a period of one year in a 220-kV potential transformer insulator. We identified the influencing factors of temperature, humidity, radiation, wind speed and direction on the magnitude of the leakage current as the most relevant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Even though heatwave events have become more frequent and intense in most regions around the world, little is known about the impact of heatwave on birth outcomes. This thesis uses a population-based study design to investigate the relationship between maternal heatwave exposure and adverse birth outcomes in Brisbane, Australia. This study found that heatwave exposure at any stage of pregnancy can be harmful to fetal growth, and further increase the risk of adverse birth outcomes. Both short- and long-term effects of heatwave on adverse birth outcomes were found. The findings in this thesis may have significant public health implications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current design rules for the member capacities of cold-formed steel columns are based on the same non-dimensional strength curve for both fixed and pinned-ended columns at ambient temperature. This research has investigated the accuracy of using current ambient temperature design rules in Australia/New Zealand (AS/NZS 4600), American (AISI S100) and European (Eurocode 3 Part 1.3) standards in determining the flexural–torsional buckling capacities of cold-formed steel columns at uniform elevated temperatures using appropriately reduced mechanical properties. It was found that these design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural torsional buckling at elevated temperatures. However, for fixed ended columns with warping fixity undergoing flexural–torsional buckling, the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This paper has therefore recommended the use of improved design rules developed for ambient temperature conditions to predict the axial compression capacities of fixed ended columns subject to flexural–torsional buckling at elevated temperatures within AS/NZS 4600 and AISI S100 design provisions. The accuracy of the proposed fire design rules was verified using finite element analysis and test results of cold-formed lipped channel columns at elevated temperatures except for low strength steel columns with intermediate slenderness whose behaviour was influenced by the increased nonlinearity in the stress–strain curves at elevated temperatures. Further research is required to include these effects within AS/NZS 4600 and AISI S100 design rules. However, Eurocode 3 Part 1.3 design rules can be used for this purpose by using suitable buckling curves as recommended in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings are exposed to elevated temperatures. Hence after such events there is a need to determine the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel members. This research is aimed at investigating the residual distortional buckling capacities of fire exposed cold-formed steel lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperature before they were tested to failure. Suitable finite element models of tested columns were also developed and validated using test results. The residual compression capacities of tested columns were predicted using the ambient temperature cold-formed steel design rules (AS/NZS 4600, AISI S100 and Direct Strength Method). Post-fire mechanical properties obtained from a previous study were used in this study. Comparison of results showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of buildings after fire events. This paper presents the details of these experimental and numerical studies and the results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load-bearing and non-load bearing structural elements. These buildings must be properly evaluated after a fire event to assess the nature and extent of structural damage. If the general appearance of the structure is satisfactory after a fire event then the question that has to be answered is how the structural capacity of cold-formed steel members in these buildings has been affected. Elevated temperatures during a fire event affect the structural performance of cold-formed steel members even after cooling down to ambient temperature due to the possible detrimental changes in their mechanical properties. However, the post-fire behaviour of cold-formed steel members has not been investigated in the past and hence there is a need to investigate the post-fire mechanical properties of cold-formed steels. Therefore an experimental study was undertaken at the Queensland University of Technology to understand the residual mechanical properties of cold-formed steels after fire events. Tensile coupon tests were conducted on three different steel grades and thicknesses to obtain their stress-strain curves and relevant mechanical properties after cooling them down from different elevated temperatures. It was found that the post-fire mechanical properties of cold-formed steels are different to the original ambient temperature mechanical properties. Hence a new set of equations is proposed to predict the reduced mechanical properties of cold-formed steels after a fire event.