938 resultados para Alterations In Monoamines


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms associated with this are unclear. We used proteomic profiling to examine changes in protein expression associated with the formation of hyper-excitable neuromas derived from rodent saphenous nerves. A two-dimensional difference gel electrophoresis ( 2D-DIGE) profiling strategy was employed to examine protein expression changes between developing neuromas and normal nerves in whole tissue lysates. We found around 200 proteins which displayed a > 1.75-fold change in expression between neuroma and normal nerve and identified 55 of these proteins using mass spectrometry. We also used immunoblotting to examine the expression of low-abundance ion channels Nav1.3, Nav1.8 and calcium channel alpha 2 delta-1 subunit in this model, since they have previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally, S(35)methionine in vitro labelling of neuroma and control samples was used to demonstrate local protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression, local protein synthesis and topological re-arrangements of ion channels may all play important roles in neuroma hyper-excitability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary isoflavones from soy are suggested to protect endothelial cells from damaging effects of endothelial stressors and thereby to prevent atherosclerosis. In search of the molecular targets of isoflavone action, we analyzed the effects of the major soy isoflavone, genistein, on changes in protein expression levels induced by the endothelial stressor homocysteine (Hcy) in EA.hy 926 endothelial cells. Proteins from cells exposed for 24 h to 25 mu M Hcy alone or in combination with 2.5 mu M genistein were separated by two-dimensional gel electrophoresis and those with altered spot intensities were identified by peptide mass fingerprinting, Genistein reversed Hcy-induced changes of proteins involved in metabolism, detoxification, and gene regulation: and some of those effects can be linked functionally to the antiatherosclerotic properties of the soy isoflavone. Alterations of steady-state levels of cytoskeletal proteins by genistein suggested an effect oil apoptosis. As a matter of fact genistein caused inhibition of Hcy-mediated apoptotic cell death as indicated by inhibition of DNA fragmentation and chromatin condensation. In conclusion, proteome analysis allows the rapid identification of cellular target proteins of genistein action in endothelial cells exposed to the endothelial stressor Hcy and therefore enables the identification of molecular pathways of its antiatherosclerotic action

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural killer (NK) cell recognition of influenza virus-infected cells involves hemagglutinin (HA) binding to sialic acid (SA) on activating NK receptors. SA also acts as a receptor for the binding of influenza virus to its target host cells. The SA binding properties of H3N2 influenza viruses have been observed to change during circulation in humans: recent isolates are unable to agglutinate chicken red blood cells and show reduced affinity for synthetic glycopolymers representing SA-alpha-2,3-lactose (3'SL-PAA) and SA-alpha-2,6-N-acetyl lactosamine (6'SLN-PAA) carbohydrates. Here, NK lysis of cells infected with human H3N2 influenza viruses isolated between 1969 and 2003 was analyzed. Cells infected with recent isolates (1999 to 2003) were found to be lysed less effectively than cells infected with older isolates (1969 to 1996). This change occurred concurrently with the acquisition of two new potential glycosylation site motifs in RA. Deletion of the potential glycosylation site motif at 133 to 135 in HA1 from a recent isolate partially restored the agglutination phenotype to a recombinant virus, indicating that the HA-SA interaction is inhibited by the glycosylation modification. Deletion of either of the recently acquired potential glycosylation sites from HA led to increased NK lysis of cells infected with recombinant viruses carrying modified HA. These results indicate that alterations in RA glycosylation may affect NK cell recognition of influenza virus-infected cells in addition to virus binding to host cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While selenium (Se) is an essential micronutrient for humans, epidemiological studies have raised concern that supranutritional Se intake may increase the risk to develop Type 2 diabetes mellitus (T2DM). We aimed to determine the impact of Se at a dose and source frequently ingested by humans on markers of insulin sensitivity and signalling. Male pigs were fed either a Se-adequate (0.17 mg Se/kg) or a Se-supranutritional (0.50 mg Se/kg; high-Se) diet. After 16 weeks of intervention, fasting plasma insulin and cholesterol levels were non-significantly increased in the high-Se pigs, whereas fasting glucose concentrations did not differ between the two groups. In skeletal muscle of high-Se pigs, glutathione peroxidase activity was increased, gene expression of forkhead box O1 transcription factor and peroxisomal proliferator-activated receptor- coactivator 1 were increased and gene expression of the glycolytic enzyme pyruvate kinase was decreased. In visceral adipose tissue of high-Se pigs, mRNA levels of sterol regulatory element-binding transcription factor 1 were increased, and the phosphorylation of Akt, AMP-activated kinase and mitogen-activated protein kinases was affected. In conclusion, dietary Se oversupply may affect expression and activity of proteins involved in energy metabolism in major insulin target tissues, though this is probably not sufficient to induce diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incidence and severity of light leaf spot epidemics caused by the ascomycete fungus Pyrenopeziza brassicae on UK oilseed rape crops is increasing. The disease is currently controlled by a combination of host resistance, cultural practices and fungicide applications. We report decreases in sensitivities of modern UK P. brassicae isolates to the azole (imidazole and triazole) class of fungicides. By cloning and sequencing the P. brassicae CYP51 (PbCYP51) gene, encoding the azole target sterol 14α-demethylase, we identified two non-synonymous mutations encoding substitutions G460S and S508T associated with reduced azole sensitivity. We confirmed the impact of the encoded PbCYP51 changes on azole sensitivity and protein activity by heterologous expression in a Saccharomyces cerevisiae mutant YUG37::erg11 carrying a controllable promoter of native CYP51 expression. In addition, we identified insertions in the predicted regulatory regions of PbCYP51 in isolates with reduced azole sensitivity. The presence of these insertions was associated with enhanced transcription of PbCYP51 in response to sub-inhibitory concentrations of the azole fungicide tebuconazole. Genetic analysis of in vitro crosses of sensitive and resistant isolates confirmed the impact of PbCYP51 alterations in coding and regulatory sequences on a reduced sensitivity phenotype, as well as identifying a second major gene at another locus contributing to resistance in some isolates. The least sensitive field isolates carry combinations of upstream insertions and non-synonymous mutations, suggesting PbCYP51 evolution is on-going and the progressive decline in azole sensitivity of UK P. brassicae populations will continue. The implications for the future control of light leaf spot are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated, by SEM, the morphology of human primary teeth roots. Twenty-four teeth were divided into 3 groups: pulp vitality (group I) and pulp necrosis without (group II) and with apical periodontitis (group III). Roots were analyzed by the presence of periodontal ligament (PDL) fibers and resorption areas. In groups I and II, presence of PDL fibers and absence of resorption were observed in all cases (100%), while all specimens (100%) of group III showed no PDL fibers and resorption areas. In conclusion, there are morphological differences in the apical region of primary teeth with different pulpal and periapical pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fukutin-related protein (FKRP) is a protein involved in the glycosylation of cell surface molecules. Pathogenic mutations in the FKRP gene cause both the more severe congenital muscular dystrophy Type 1C and the milder Limb-Girdle Type 21 form (LGMD21). Here we report muscle histological alterations and the analysis of 11 muscle proteins: dystrophin, four sarcoglycans, calpain 3, dysferlin, telethonin, collagen VI, alpha-DG, and alpha 2-laminin, in muscle biopsies from 13 unrelated LGMD21 patients with 10 different FKRP mutations. In all, a typical dystrophic pattern was observed. In eight patients, a high frequency of rimmed vacuoles was also found. A variable degree of alpha 2-laminin deficiency was detected in 12 patients through immunofluorescence analysis, and 10 patients presented a-DG deficiency on sarcolemmal membranes. Additionally, through Western blot analysis, deficiency of calpain 3 and dystrophin bands was found in four and two patients, respectively. All the remaining proteins showed a similar pattern to normal controls. These results suggest that, in our population of LGMD21 patients, different mutations in the FKRP gene are associated with several secondary muscle protein reductions, and the deficiencies of alpha 2-laminin and alpha-DG on sections are prevalent, independently of mutation type or clinical severity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to characterize the distribution of myofibers in the gluteus medius muscle of inactive horses of the Brasileiro de Hipismo (BH) breed at different ages by means of histochemical analyses, according to sex and depth of the biopsy. A total of 78 inactive horses (9 castrated males, 35 stallions, and 34 females) of the BH breed, aged 1 to 4 years, were used. A percutaneous muscle biopsy was obtained with a 6.0-mm Bergstrom-type needle, which allowed the removal of muscle fragments at depths of 20 and 60 mm. Myofiber types were determined based on myofibrillar adenosine triphosphatase (mATPase) and nicotinamide dinucleotide tetrazolium reductase (NADH-TR) techniques. Morphometry of the fibers was determined based on cross-sectional area (CSA), mean frequency (F), and relative cross-sectional area (RCSA). The current study demonstrated that BH horses 3 and 4 years of age show a greater percentage of, and area occupied by, type IIA fibers and lower percentage of type IIX fibers in the gluteus medius muscle compared with horses 1 and 2 years of age. No difference was found between sexes in the frequency of and area occupied by the different fiber types at any of the depths and ages studied. In this study, females showed a greater CSA for all fibers in comparison with males, at 1 year of age. The results of the current study indicate that the gluteus medius muscle of inactive BH horses shows modifications in its structural and biochemical composition during the growth of the animals, leading to a better oxidative capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estudaram-se as alterações de atividade das enzimas musculares creatino quinase (CK), lactato desidrogenase (LDH) e aspartato aminotransferase (AST) em um grupo de cavalos que utilizados em provas de enduro de 70 e 100km de distância, em cinco competições. Os valores (U/l) basais (antes da largada) foram 245,13±9,84 para CK, 496,61±14,76 para LDH e 328,95±8,65 para AST. Todas as atividades das enzimas decresceram no primeiro momento das provas (~30km). Valores de pico, significativamente diferentes, foram alcançados para CK (413,59±50,75) imediatamente após 70km de distância; 24 horas após para LDH (628,61±33,30); e 48 horas após as provas para AST (389,89±16,96). A monitoração do período de recuperação revelou diferente comportamento entre as concentrações enzimáticas com CK retornando aos valores basais 24 horas pós-provas (279,61 ± 23,05). LDH e AST retornaram aos valores basais, 72 horas pós-provas (505,25±33,78 e 359,35±24,90, respectivamente). Os dados obtidos revelaram diferentes alterações na concentração de enzimas musculares de cavalos de enduro, diretamente relacionadas com a duração do esforço.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: We have analyzed the peripheral insulin and glucose sensitivity in vivo, and islet function ex vivo in rats with different degrees of insulin resistance induced by dexamethasone (DEX).Methods: Dexamethasone, in the concentrations of 0.1 (DEX 0.1), 0.5 (DEX 0.5), and 1.0 mg/kg body weight (DEX 1.0) was administered daily, intraperitoneally, to adult Wistar rats for 5 days, whereas controls received saline.Results: Dexamethasone treatment induced peripheral insulin resistance in a dose-dependent manner. At the end of the treatment, only DEX 1.0 rats showed significant increase of postabsorptive blood glucose and serum triglycerides, and nonesterified fatty acids levels. Incubation of pancreatic islets in increasing glucose concentrations (2.8-22 mM) led to an augmented insulin secretion in all DEX-treated rats. Leucine, carbachol, and high KCl concentrations induced the insulin release in DEX 0.5 and DEX 1.0, whereas arginine augmented secretion in all DEX-treated groups.Conclusions: We demonstrate that in DEX 0.5 and, especially in DEX 0.1 groups, but not in DEX 1.0, the adaptations that occurred in the endocrine pancreas are able to counteract metabolic disorders (glucose intolerance and dyslipidemia). These animal models seem to be interesting approaches for the study of degrees of subjacent effects that may mediate type 2 diabetes (DEX 1.0) and islet function alterations, without collateral effects (DEX 0.1 and DEX 0.5).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Avaliar o efeito da desnutrição protéica na parede intestinal do rato através da medida de força de ruptura e dosagem do colágeno tecidual no íleo e cólon distal. MÉTODOS: Foram utilizados 120 ratos, pesando em média 100g, que receberam durante 07 dias uma dieta padrão, contendo 20% de caseína para adaptação dos animais as condições do biotério. Após esse período os animais foram divididos em dois grupos de 60, o controle denominado grupo um que recebeu a dieta padrão, e o grupo teste denominado grupo dois, que recebeu dieta hipoprotéica contendo 2% de caseína. Os dois grupos receberam suas respectivas dietas por um período de 21 dias. Após esse período iniciou-se o sacrifício seqüencial dos animais em ambos os grupos, em número de 12 animais em cada momento, correspondendo ao dia Zero (MO), 4º dia (M1), 7º dia (M2), 14º dia (M3), e 21º dia (M4) sendo mantida a mesma dieta até o final do sacrifício. em cada momento foram avaliados o peso corpóreo, albumina sanguínea, hidroxiprolina tecidual, relação hidroxiprolina/proteína tecidual e a força de ruptura no segmento ileal e cólico dos animais. RESULTADOS: Observou-se que a força de ruptura do segmento ileal e do cólon distal foi menor nos animais desnutridos (Grupo 2). A perda da resistência mecânica foi maior no segmento do cólon distal do que no segmento ileal, provavelmente pela menor concentração do colágeno tecidual no cólon distal. CONCLUSÃO: A desnutrição protéica induz a diminuição da resistência mecânica no íleo e no cólon distal associado a diminuição do colágeno tecidual na parede intestinal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the influence of myocardial collagen volume fraction (CVF, %) and hydroxyproline concentration (mu g/mg) on rat papillary muscle function. Collagen excess was obtained in 10 rats with unilateral renal ischemia for 5 wk followed by 3-wk treatment with ramipril (20 mg . kg(-1) . day(-1)) (RHTR rats; CVF = 3.83 +/- 0.80, hydroxyproline = 3.79 +/- 0.50). Collagen degradation was induced by double infusion of oxidized glutathione (GSSG rats; CVF 5 2.45 +/- 0.52, hydroxyproline = 2.85 +/- 0.18). Nine untreated rats were used as controls (CFV = 3.04 +/- 0.58, hydroxyproline = 3.21 +/- 0.30). Active stiffness (AS; g . cm(-2) . %L-max(-1)) and myocyte cross-sectional area (MA; mu m(2)) were increased in the GSSG rats compared with controls [AS 5.86 vs. 3.96 (P< 0.05); MA 363 +/- 59 vs. 305 +/- 28 (P< 0.05)]. In GSSG and RHTR groups the passive tension-length curves were shifted downwards, indicating decreased passive stiffness, and upwards, indicating increased passive stiffness, respectively. Decreased collagen content induced by GSSG is related to myocyte hypertrophy, decreased passive stiffness, and increased AS, and increased collagen concentration causes myocardial diastolic dysfunction with no effect on systolic function.