1000 resultados para Algoritmo genético multi-objectivo
Resumo:
A localização de bancos de capacitores nas redes de distribuição de energia elétrica, corretamente dimensionados, busca compensar eventuais excessos de circulação de potência reativa pelas linhas, o que implica a redução de custos operacionais pela redução das perdas de energia e um aumento da capacidade de transmissão de potência ativa assegurando os níveis estabelecidos de tensão e fator de potência simultaneamente. A proliferação das cargas não lineares provocou uma mudança nos cenários de estudo dos sistemas elétricos de potência devido aos efeitos nocivos que os harmônicos gerados por elas ocasionam sobre a qualidade da energia elétrica. Considerando este novo cenário, esta tese tem como objetivo geral desenvolver uma ferramenta computacional utilizando técnicas de inteligência computacional apoiada em algoritmos genéticos (AG), para a otimização multiobjetivo da compensação da potência reativa em redes elétricas de distribuição capaz de localizar e dimensionar de forma ótima as unidades de compensação necessárias para obter os melhores benefícios econômicos e a manutenção dos índices de qualidade da energia estabelecidos pelas normas brasileiras. Como Inovação Tecnológica do trabalho a ferramenta computacional desenvolvida permite otimizar a compensação da potência reativa para melhorar do fator de potência em redes de distribuição contaminadas com harmônicos que, diferentemente de métodos anteriores, não só emprega bancos de capacitores, mas também filtros de harmônicos com esse objetivo. Utiliza-se o algoritmo NSGA-II, que determina as soluções ótimas de Pareto para o problema e permite ao especialista determinar as soluções mais efetivas. A proposta para a solução do problema apresenta várias inovações podendo-se destacar que a solução obtida permite determinar a compensação de potência reativa com capacitores em sistemas com certa penetração harmônica, atendendo a normas de qualidade de energia pertinentes, com relação aos níveis de distorção harmônica tolerados.
Resumo:
Essa dissertação de mestrado apresenta um estudo comparativo entre três metodologias baseadas em algoritmos genéticos para ajuste coordenado de estabilizadores de sistemas de potência (ESP). Os procedimentos de ajuste do ESP são formulados como um problema de otimização, a fim de: 1) maximizar o coeficiente de amortecimento mínimo do sistema em malha fechada; 2) maximizar o somatório de todos os coeficientes de amortecimento do sistema em malha fechada; e 3) deslocar os modos eletromecânicos poucos amortecidos ou mal amortecidos para uma zona pré-escrita no plano s. As três metodologias consideram um conjunto de condições de operacionais pré-especificadas. O sistema elétrico foi representado por equações no espaço de estado e as matrizes associadas com a modelagem foram obtidas por meio da versão acadêmica do programa PacDyn. As simulações foram realizadas usando o MATLAB. As metodologias foram aplicadas no conhecido sistema teste New England.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
In this study, a mathematical model with temporal dependence for dengue transmission was developed, considering coupling between human population and the vector mosquito, and a sorotype circulating on population. This model was analysed with the goal to explain disease's periodicity. Finally, a genetic algorithm was set up to study model's sensibility.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This work was developed starting the study of traditionals mathematical models that describe the epidemiology of infectious díseases by direct or indirect transmission. We did the classical approach of equilibrium solutions search, its analysis of stability analytically and by numerical solutions. After, we applied these techniques in a compartimental model of Dengue transmission that consider the mosquito population (susceptible vector Vs and 'infected vector VI), human population (suseeptíble humans S, infected humans I and recovered humans R) and just one sorotype floating in this population. We found the equilibrium solutions and from their analises, it was possible find the reprodution rate of dísease and which define if the disease will be endemic or not in the population.- ext, we used the method described a..~, [1] to study the infíuence of seasonalíty at vírus transmission, when it just acts on one of rates related with the vector. Lastly, we made de modeling considering the periodicity of alI rates, thereby building, a modeI with temporal dependence that permits to study periodicity of transmission through of the approach of parametrical ressonance and genetic algorithm
Resumo:
In this paper we deal with the one-dimensional integer cutting stock problem, which consists of cutting a set of available objects in stock in order to produce ordered smaller items in such a way as to optimize a given objective function, which in this paper is composed of three different objectives: minimization of the number of objects to be cut (raw material), minimization of the number of different cutting patterns (setup time), minimization of the number of saw cycles (optimization of the saw productivity). For solving this complex problem we adopt a multiobjective approach in which we adapt, for the problem studied, a symbiotic genetic algorithm proposed in the literature. Some theoretical and computational results are presented.
Resumo:
In this paper, a method is proposed to refine the LASER 3D roofs geometrically by using a high-resolution aerial image and Markov Random Field (MRF) models. In order to do so, a MRF description for grouping straight lines is developed, assuming that each projected side contour and ridge is topologically correct and that it is only necessary to improve its accuracy. Although the combination of laser data with data from image is most justified for refining roof contour, the structure of ridges can give greater robustness in the topological description of the roof structure. The MRF model is formulated based on relationships (length, proximity, and orientation) between the straight lines extracted from the image and projected polygon and also on retangularity and corner injunctions. The energy function associated with MRF is minimized by the genetic algorithm optimization method, resulting in the grouping of straight lines for each roof object. Finally, each grouping of straight lines is topologically reconstructed based on the topology of the corresponding LASER scanning polygon projected onto the image-space. The results obtained were satisfactory. This method was able to provide polygons roof refined buildings in which most of its contour sides and ridges were geometrically improved.