841 resultados para Algorithms - Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses two pitch detection algorithms (PDA) for simple audio signals which are based on zero-cross rate (ZCR) and autocorrelation function (ACF). As it is well known, pitch detection methods based on ZCR and ACF are widely used in signal processing. This work shows some features and problems in using these methods, as well as some improvements developed to increase their performance. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years radar sensor networks for localization and tracking in indoor environment have generated more and more interest, especially for anti-intrusion security systems. These networks often use Ultra Wide Band (UWB) technology, which consists in sending very short (few nanoseconds) impulse signals. This approach guarantees high resolution and accuracy and also other advantages such as low price, low power consumption and narrow-band interference (jamming) robustness. In this thesis the overall data processing (done in MATLAB environment) is discussed, starting from experimental measures from sensor devices, ending with the 2D visualization of targets movements over time and focusing mainly on detection and localization algorithms. Moreover, two different scenarios and both single and multiple target tracking are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document. Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Internet das Coisas é um novo paradigma de comunicação que estende o mundo virtual (Internet) para o mundo real com a interface e interação entre objetos. Ela possuirá um grande número de dispositivos heteregôneos interconectados, que deverá gerar um grande volume de dados. Um dos importantes desafios para seu desenvolvimento é se guardar e processar esse grande volume de dados em aceitáveis intervalos de tempo. Esta pesquisa endereça esse desafio, com a introdução de serviços de análise e reconhecimento de padrões nas camadas inferiores do modelo de para Internet das Coisas, que procura reduzir o processamento nas camadas superiores. Na pesquisa foram analisados os modelos de referência para Internet das Coisas e plataformas para desenvolvimento de aplicações nesse contexto. A nova arquitetura de implementada estende o LinkSmart Middeware pela introdução de um módulo para reconhecimento de padrões, implementa algoritmos para estimação de valores, detecção de outliers e descoberta de grupos nos dados brutos, oriundos de origens de dados. O novo módulo foi integrado à plataforma para Big Data Hadoop e usa as implementações algorítmicas do framework Mahout. Este trabalho destaca a importância da comunicação cross layer integrada à essa nova arquitetura. Nos experimentos desenvolvidos na pesquisa foram utilizadas bases de dados reais, provenientes do projeto Smart Santander, de modo a validar da nova arquitetura de IoT integrada aos serviços de análise e reconhecimento de padrões e a comunicação cross-layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the development of a complete data visualisation system for large tabular databases, such as those commonly found in a business environment. A state-of-the-art 'cyberspace cell' data visualisation technique was investigated and a powerful visualisation system using it was implemented. Although allowing databases to be explored and conclusions drawn, it had several drawbacks, the majority of which were due to the three-dimensional nature of the visualisation. A novel two-dimensional generic visualisation system, known as MADEN, was then developed and implemented, based upon a 2-D matrix of 'density plots'. MADEN allows an entire high-dimensional database to be visualised in one window, while permitting close analysis in 'enlargement' windows. Selections of records can be made and examined, and dependencies between fields can be investigated in detail. MADEN was used as a tool for investigating and assessing many data processing algorithms, firstly data-reducing (clustering) methods, then dimensionality-reducing techniques. These included a new 'directed' form of principal components analysis, several novel applications of artificial neural networks, and discriminant analysis techniques which illustrated how groups within a database can be separated. To illustrate the power of the system, MADEN was used to explore customer databases from two financial institutions, resulting in a number of discoveries which would be of interest to a marketing manager. Finally, the database of results from the 1992 UK Research Assessment Exercise was analysed. Using MADEN allowed both universities and disciplines to be graphically compared, and supplied some startling revelations, including empirical evidence of the 'Oxbridge factor'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Fourier domain optical coherence tomography (FD-OCT), a large amount of interference data needs to be resampled from the wavelength domain to the wavenumber domain prior to Fourier transformation. We present an approach to optimize this data processing, using a graphics processing unit (GPU) and parallel processing algorithms. We demonstrate an increased processing and rendering rate over that previously reported by using GPU paged memory to render data in the GPU rather than copying back to the CPU. This avoids unnecessary and slow data transfer, enabling a processing and display rate of well over 524,000 A-scan/s for a single frame. To the best of our knowledge this is the fastest processing demonstrated to date and the first time that FD-OCT processing and rendering has been demonstrated entirely on a GPU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as “histogram binning” inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. ^ Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. ^ The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. ^ These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. ^ In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research presents several components encompassing the scope of the objective of Data Partitioning and Replication Management in Distributed GIS Database. Modern Geographic Information Systems (GIS) databases are often large and complicated. Therefore data partitioning and replication management problems need to be addresses in development of an efficient and scalable solution. ^ Part of the research is to study the patterns of geographical raster data processing and to propose the algorithms to improve availability of such data. These algorithms and approaches are targeting granularity of geographic data objects as well as data partitioning in geographic databases to achieve high data availability and Quality of Service(QoS) considering distributed data delivery and processing. To achieve this goal a dynamic, real-time approach for mosaicking digital images of different temporal and spatial characteristics into tiles is proposed. This dynamic approach reuses digital images upon demand and generates mosaicked tiles only for the required region according to user's requirements such as resolution, temporal range, and target bands to reduce redundancy in storage and to utilize available computing and storage resources more efficiently. ^ Another part of the research pursued methods for efficient acquiring of GIS data from external heterogeneous databases and Web services as well as end-user GIS data delivery enhancements, automation and 3D virtual reality presentation. ^ There are vast numbers of computing, network, and storage resources idling or not fully utilized available on the Internet. Proposed "Crawling Distributed Operating System "(CDOS) approach employs such resources and creates benefits for the hosts that lend their CPU, network, and storage resources to be used in GIS database context. ^ The results of this dissertation demonstrate effective ways to develop a highly scalable GIS database. The approach developed in this dissertation has resulted in creation of TerraFly GIS database that is used by US government, researchers, and general public to facilitate Web access to remotely-sensed imagery and GIS vector information. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as "histogram binning" inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advancement of GPS technology has made it possible to use GPS devices as orientation and navigation tools, but also as tools to track spatiotemporal information. GPS tracking data can be broadly applied in location-based services, such as spatial distribution of the economy, transportation routing and planning, traffic management and environmental control. Therefore, knowledge of how to process the data from a standard GPS device is crucial for further use. Previous studies have considered various issues of the data processing at the time. This paper, however, aims to outline a general procedure for processing GPS tracking data. The procedure is illustrated step-by-step by the processing of real-world GPS data of car movements in Borlänge in the centre of Sweden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The only method used to date to measure dissolved nitrate concentration (NITRATE) with sensors mounted on profiling floats is based on the absorption of light at ultraviolet wavelengths by nitrate ion (Johnson and Coletti, 2002; Johnson et al., 2010; 2013; D’Ortenzio et al., 2012). Nitrate has a modest UV absorption band with a peak near 210 nm, which overlaps with the stronger absorption band of bromide, which has a peak near 200 nm. In addition, there is a much weaker absorption due to dissolved organic matter and light scattering by particles (Ogura and Hanya, 1966). The UV spectrum thus consists of three components, bromide, nitrate and a background due to organics and particles. The background also includes thermal effects on the instrument and slow drift. All of these latter effects (organics, particles, thermal effects and drift) tend to be smooth spectra that combine to form an absorption spectrum that is linear in wavelength over relatively short wavelength spans. If the light absorption spectrum is measured in the wavelength range around 217 to 240 nm (the exact range is a bit of a decision by the operator), then the nitrate concentration can be determined. Two different instruments based on the same optical principles are in use for this purpose. The In Situ Ultraviolet Spectrophotometer (ISUS) built at MBARI or at Satlantic has been mounted inside the pressure hull of a Teledyne/Webb Research APEX and NKE Provor profiling floats and the optics penetrate through the upper end cap into the water. The Satlantic Submersible Ultraviolet Nitrate Analyzer (SUNA) is placed on the outside of APEX, Provor, and Navis profiling floats in its own pressure housing and is connected to the float through an underwater cable that provides power and communications. Power, communications between the float controller and the sensor, and data processing requirements are essentially the same for both ISUS and SUNA. There are several possible algorithms that can be used for the deconvolution of nitrate concentration from the observed UV absorption spectrum (Johnson and Coletti, 2002; Arai et al., 2008; Sakamoto et al., 2009; Zielinski et al., 2011). In addition, the default algorithm that is available in Satlantic sensors is a proprietary approach, but this is not generally used on profiling floats. There are some tradeoffs in every approach. To date almost all nitrate sensors on profiling floats have used the Temperature Compensated Salinity Subtracted (TCSS) algorithm developed by Sakamoto et al. (2009), and this document focuses on that method. It is likely that there will be further algorithm development and it is necessary that the data systems clearly identify the algorithm that is used. It is also desirable that the data system allow for recalculation of prior data sets using new algorithms. To accomplish this, the float must report not just the computed nitrate, but the observed light intensity. Then, the rule to obtain only one NITRATE parameter is, if the spectrum is present then, the NITRATE should be recalculated from the spectrum while the computation of nitrate concentration can also generate useful diagnostics of data quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis builds a framework for evaluating downside risk from multivariate data via a special class of risk measures (RM). The peculiarity of the analysis lies in getting rid of strong data distributional assumptions and in orientation towards the most critical data in risk management: those with asymmetries and heavy tails. At the same time, under typical assumptions, such as the ellipticity of the data probability distribution, the conformity with classical methods is shown. The constructed class of RM is a multivariate generalization of the coherent distortion RM, which possess valuable properties for a risk manager. The design of the framework is twofold. The first part contains new computational geometry methods for the high-dimensional data. The developed algorithms demonstrate computability of geometrical concepts used for constructing the RM. These concepts bring visuality and simplify interpretation of the RM. The second part develops models for applying the framework to actual problems. The spectrum of applications varies from robust portfolio selection up to broader spheres, such as stochastic conic optimization with risk constraints or supervised machine learning.