980 resultados para Alexander, the Great, 356-323 B.C.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Catheter ablation for idiopathic ventricular arrhythmia is well established but epicardial origin, proximity to coronary arteries, and limited accessibility may complicate ablation from the venous system in particular from the great cardiac vein (GCV). METHODS Between April 2009 and October 2010 14 patients (56 ± 15 years; 9 male) out of a total group of 117 patients with idiopathic outflow tract tachycardias were included undergoing ablation for idiopathic VT or premature ventricular contractions (PVC) originating from GCV. All patients in whom the PVC arose from the GCV were subject to the study. In these patients angiography of the left coronary system was performed with the ablation catheter at the site of earliest activation. RESULTS Successful ablation was performed in 6/14 (43%) and long-term success was achieved in 5/14 (36%) patients. In 4/14 patients (28.6%) ablation was not performed. In another 4 patients (26.7%), ablation did not abolish the PVC/VT. In the majority, the anatomical proximity to the left coronary system prohibited effective RF application. In 3 patients RF application resulted in a coronary spasm with complete regression as revealed in repeat coronary angiography. CONCLUSION A relevant proportion idiopathic VT/PVC can safely be ablated from the GCV without significant permanent coronary artery stenosis after RF application. Our data furthermore demonstrate that damage to the coronary artery system is likely to be transient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Archibald Duff

Relevância:

100.00% 100.00%

Publicador:

Resumo:

by Adolph Büchler

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ed. with transl. and notes by A. Cowley

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. A vast majority of studies conducted in both developed and developing nations have focused on the epidemiology of HBV (Hepatitis B virus) and HCV (Hepatitis C virus) in high-risk populations; low-risk populations have been neglected. Recently Hwang et al conducted a unique large cross-sectional study in American university students that focused on cosmetic procedures and drug use for acquiring these infections among a low-risk young adult population In Houston. ^ Methods. This study is a secondary data analysis of the cross-sectional study conducted by Hwang et al. Data for this anonymous study were collected from 7,960 college students, among whom were the 2,561 non US/Canadian born students included in this study. All students completed a self-administered questionnaire and provided a blood sample. The epidemiology of HBV/HCV and risk factors for acquiring HBV/HCV infection was studied by comparing those with HBV/HCV infection versus those without. Both univariate and multivariate logistic regression was used to analyze the data. ^ Results. Overall prevalence of HBV and HCV infections were 22% and 0.8% respectively. By multivariable analysis, the factors that were independently associated with increased prevalence of HBV infection were increasing age per year (OR=1.06, 95% C.I=1.04-1.08), Black or Asian race (OR=6.21, 95% C.I=3.14-12.27), history of household contact with hepatitis (OR=1.87, 95% C.I=1.15-3.05), and having sexual partner with hepatitis (OR=5.20, 95% C.I=1.5-18.00). For HCV these factors included increasing age per year (OR= 1.08, 95% C.I=1.03-1.14), history of blood transfusion prior to 1991 (OR=25.45, 95% C.I=7.58-85.40), and Injection drug use. (OR=78.15, 95% C.I=12.19-500.85). Cosmetic procedures like tattooing were not significant risk factors for either HBV or HCV infection. ^ Conclusions. In a low-risk adult foreign born population, cosmetic procedures are not significant risk factors for HBV or HCV infection. The prevention strategies of these infections in this population should focus on safe sexual practices/abstinence and HBV vaccination should be provided to adolescents and sexually active adults. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sedimentological and biostratigraphic investigations of 15 cores (total length: 88 m) from the vicinity of Great Meteor seamount (about 30° N, 28° W) showed that the calcareous ooze are asymmetrically distributed around the seamount and vertically differentiated into two intervals. East and west of the seampunt, the upper "A"-interval is characterized by yellowish-brown sediment colors and bioturbation; ash layers and diatoms are restricted to the eastern cores. On both seamount flanks, the sediment of the lower "B"-interval are white and very rich in CaCO3 with a major fine silt (2-16 µ) mode (mainly coccoliths). Lamination, manganese micronodules, Tertiary foraminifera and discoasters, and small limestone and basalt fragments are typical of the "B"-interval of the eastern cores only. The sediments contain abundant displaced material which was reworked from the upper parts of the seamount. The sedimentation around the seamount is strongly influenced by the kind of displaced material and the intensity of its differentiated dispersal: the sedimentation rates are generally higher on the east than on the west flank /e.g. in "B": 0.9 cm/1000 y in the W; 3.1 cm/1000 y in the E), and lower for the "A" than for the "B"-interval. The lamination is explained by the combination of increased sedimentation rates with a strong input of material poor in organic carbon producing a hostile environment for benthic life. The CaCO3 content of the core is highly influenced by the proportion of displaced bigenous carbonate material (mainly coccoliths). The genuine in-situ conditions of the dissolution facies are only reflected by the minimum CaCO3 values of the cores (CCD = about 5,500 m; first bend in dissolution curve = 4,000 m; ACD = about 3,400 m). The preservation of the total foraminiferal association depends on the proportions of in-situ versus displaced specimens. In greater water depths (stronger dissolution), for example, the preservation can be improved by the admixture of relatively well preserved displaced foraminifera. Carbonate cementation and the formation of manganese micronodules are restricted to microenvironments with locally increased organic carbon contents (e.g. pellets; foraminifera). The ash layers consist of redeposited, silicic volcanic glass of trachytic composition and Mio-Pliocene age; possibly, they can be derived from the upper part of the seamount. Siliceous organisms, especially diatoms, are frequent close to the ash layers and probably also redeposited. Their preservation was favoured by the increase of the SiO2 content in the pore water caused by the silicic volcanic glass. The cores were biostraftsraphically subdivided with the aid of planktonic foraminifera and partly alsococcoliths. In most cases, the biostratigraphically determined cold- and warm sections could be correlated from core to core. Almost all cores do not penetrate the Late Pleistocene. All Tertiary fossils are reworked. In general, the warm/cold boundary W2/C2 corresponds with the lithostratigraphic A/B boundray. Benthonic foraminifera indicate the original site deposition of the displaced material (summit plateau or flanks of the seamount). The asymmetric distribution of the sediments around the seamount east and west of the NE-directed antarctic bottom current (AABW) is explained by the distortion of the streamlines by the Coriolis force; by this process the current velocity is increased west of the seamount and decreased east of it. The different proportion of displaced material within the "A" and "B" interval is explained by changes of the intensity of the oceanic circulation. At the time of "B" the flow of the AABW around the seamount was stronger than during "A"; this can be inferred from the presence of characteristic benthonic foraminifera. The increased oceanic circulation implies an enhanced differentiation of the current velocities, and by that, also of the sedimentation rates, and intensifies the winnowed sediment material was transported downslope by turbid layers into the deep-sea, incorporated into the current system of the AABW, and asymmetrically deposited around the seamount.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Great Meteor Seamount (GMS) is a very large (24,000 km**3) guyot with a flat summit plateau at 330-275 m; it has a volcanic core, capped by 150-600 m of post-Middle-Miocene carbonate and pyroclastic rocks, and is covered by bioclastic sands. The much smaller Josephine Seamount (JS, summit 170- 500 m w. d.) consists mainly of basalt which is only locally covered by limestones and bioclastic sands. 2. The bioclastic sands are almost free of terrigenous components, and are well sorted, unimodal medium sands. (1) "Recent pelagic sands" are typical of water depths > 600 m (JS) or > 1000 m (GMS). (2) "Sands of mixed relict-recent origin" (10-40% relict) and (3) "relict sands" (> 40% relict) are highly reworked, coarse lag deposits from the upper flanks and summit tops in which recent constituents are mixed with Pleistocene or older relict material. 3. From the carbonate rocks of both seamounts, 12 "microfacies" (MF-)types were distinguished. The 4 major types are: (1) Bio(pel)sparites (MF 1) occur on the summit plateaus and consist of magnesian calcite cementing small pellets and either redeposited planktonic bioclasts or mixed benthonic-planktonic skeletal debris ; (2) Porous biomicrites (MF 2) are typical of the marginal parts of the summit plateaus and contain mostly planktonic foraminifera (and pteropods), sometimes with redeposited bioclasts and/or coated grains; (3) Dense, ferruginous coralline-algal biomicrudites with Amphistegina sp. (MF 3.1), or with tuffaceous components (MF 3.2); (4) Dense, pelagic foraminiferal nannomicrite (MF 4) with scattered siderite rhombs. Corresponding to the proportion and mineralogical composition of the bioclasts and of the (Mgcalcitic) peloids, micrite, and cement, magnesian calcite (13-17 mol-% MgCO3) is much more abundant than low-Mg calcite and aragonite in rock types (1) and (2). Type (3) contains an "intermediate" Mg-calcite (7-9 mol-X), possibly due to an original Mg deficiency or to partial exsolution of Mg during diagenesis. The nannomicrite (4) consists of low-Mg calcite only. 4. Three textural types of volcanic and associated gyroclastic rocks were distinguished: (1) holohyaline, rapidly chilled and granulated lava flows and tuffs (palagonite tuff breccia and hyaloclastic top breccia); (2) tachylitic basalts (less rapidly chilled; with opaque glass); and (3) "slowly" crystallized, holocrystalline alkali olivine basalts. The carbonate in most mixed pyroclastic-carbonate sediments at the basalt contact is of "post-eruptive" origin (micritic crusts etc.); "pre-eruptive" limestone is recrystallized or altered at the basalt contact. A deuteric (?hydrothermal) "mineralX", filling vesicles in basalt and cementing pyroclastic breccias is described for the first time. 5. Origin and development of GMS andJS: From its origin, some 85 m. y. ago, the volcano of GMS remained active until about 10 m. y. B. P. with an average lava discharge of 320 km**3/m. y. The volcanic origin of JS is much younger (?Middle Tertiary), but the volcanic activity ended also about 9 m. y. ago. During L a t e Miocene to Pliocene times both volcanoes were eroded (wave-rounded cobbles). The oldest pyroclastics and carbonates (MF 3.1, 3.2) were originally deposited in shallow-water (?algal reef hardground). The Plio (-Pleisto) cene foraminiferal nannomicrites (MF 4) suggest a meso- to bathypelagic environment along the flanks of GMS. During the Quaternary (?Pleistocene) bioclastic sands were deposited in water depths beyond wave base on the summit tops, repeatedly reworked, and lithified into loosely consolidated biopelsparites and biomicrites (MF 1 and 2; Fig. 15). Intermediate steps were a first intragranular filling by micrite, reworking, oncoidal coating, weak consolidation with Mg-calcite cemented "peloids" in intergranular voids and local compaction of the peloids into cryptocrystalline micrite with interlocking Mg-calcite crystals up to 4p. The submarine lithification process was frequently interrupted by long intervals of nondeposition, dissolution, boring, and later infilling. The limestones were probably never subaerially exposed. Presently, the carbonate rocks undergo biogenic incrustation and partial dissolution into bioclastic sands. The irregular distribution pattern of the sands reflects (a) the patchy distribution of living benthonic organisms, (b) the steady rain of planktonic organism onto the seamount top, (c) the composition of disintegrating subrecent limestones, and (d) the intensity of winnowing and reworking bottom current

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine transgression Into the Baltic Sea through the Great Belt took place around 9,370 calibrated C-14-years B.P. The sedimentary sequence from the early brackish phase and the change to marine conditions has been investigated in detail through C-14-datings, and oxygen and carbon isotope measurements, and is interpreted by comparison with modern analogs. The oldest brackish sediments are the strongly laminated clays and silts rich in organic carbon followed by non-laminated heavily bioturbated silts. The bedding and textural characteristics and stable isotope analyses on Ammonia beccarii (dextral) and A. beccarii (sinistral) show that the deposltlonal conditions respond to a change at about 9,100 cal. a B.P. from an unstratified brackish water environment in the initial stage of the Littorina Transgression to a thermohaline layered milieu in the upper unit. The oxygen isotope results indicate that the bottom waters of this latter period had salinities and temperatures comparable to the present day Kiel Bay waters. The isotopic composition of the total organic carbon and the d13C-values of A. beccarii reveal a gradual change from an initially lacustrine/terrestrial provenance toward a brackish/marine dominated depositional environment. A stagnation of the sea level at around 9,100 to 9,400 B.P. is indicated.