980 resultados para Airway Epithelium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas interactions between the TCRalpha beta and self MHC:peptide complexes are clearly required for positive selection of mature CD4(+) and CD8(+) T cells during intrathymic development, the role of self or foreign ligands in maintaining the peripheral T cell repertoire is still controversial. In this report we have utilized keratin 14-beta2-microglobulin (K14-beta2m)-transgenic mice expressing beta2m-associated ligands exclusively on thymic cortical epithelial cells to address the possible influence of TCR:ligand interactions in peripheral CD8(+) T cell homeostasis. Our data indicate that CD8(+) T cells in peripheral lymphoid tissues are present in normal numbers in the absence of self MHC class I:peptide ligands. Surprisingly, however, steady state homeostasis of CD8(+) T cells in the intestinal epithelium is severely affected by the absence of beta2m-associated ligands. Indeed TCRalpha beta(+) IEL subsets expressing CD8alpha beta or CD8alpha alpha are both dramatically reduced in K14-beta2m mice, suggesting that the development, survival or expansion of CD8(+) IEL depends upon interaction of the TCR with MHC class I:peptide or other beta2m-associated ligands elsewhere than on thymic cortical epithelium. Collectively, our data reveal an unexpected difference in the regulation of CD8(+) T cell homeostasis by beta2m-associated ligands in the intestine as compared to peripheral lymphoid organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To compare pressure–volume (P–V) curves obtained with the Galileo ventilator with those obtained with the CPAP method in patients with ALI or ARDS receiving mechanical ventilation. P–V curves were fitted to a sigmoidal equation with a mean R2 of 0.994 ± 0.003. Lower (LIP) and upper inflection (UIP), and deflation maximum curvature (PMC) points calculated from the fitted variables showed a good correlation between methods with high intraclass correlation coefficients. Bias and limits of agreement for LIP, UIP and PMC obtained with the two methods in the same patient were clinically acceptable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:In the retina, the balance between pro- and anti-angiogenic factors is critical for angiogenesis control but is also involved in cell survival and maintenance. For instance, the anti-angiogenic factor PEDF is neuroprotective for photoreceptors (PRs) in models of retinal degeneration. We previously reported upregulation of VEGF (24h to 48h post lesion) in the light-damage (LD) model. Furthermore, systemic delivery of PEDF, as well as lentiviral gene transfer of an anti-VEGF antibody rescue PRs from cell death. Studies in vitro show that VEGF induces retinal endothelial cells apoptosis via the alteration of the Akt1/p38 MAPK signalling pathway under hypoxic conditions. Thus, in this study, we investigate the effect of high levels of VEGF on retinal pigmented epithelium (RPE) permeability and molecular targets expression after light-induced PR degeneration. Methods:To characterize the action of VEGF in the retina during the course of LD, we exposed adult Balb/c mice to 5'000 lux for 1h, and we collected neural retinas and eye-cups (containing RPE) at different time points after the LD. We analysed protein expression by Elisa and Western blotting. In order to study RPE cell permeability after the LD we stained β-catenin on flat mounted RPE. Results:In the neural retina, preliminary results indicate that high levels of VEGF induce a significant upregulation of VEGF receptor 2, whereas VEGF receptor 1 expression is decreased. Concomitantly with VEGF upregulation, LD increases the Src phosphorylation between 24h to 48h. Furthermore, we observe that β-catenin translocates to the cytoplasm of RPE cells between 24h to 36h after the lesion, indicating an increase on the RPE permeability, which could contribute indirectly to the deleterious effect of VEGF observed during light-induced PR apoptosis. Conclusions:This study further involves VEGF in LD and highlights the prime importance of angiogenic factor balance for PR survival. Our results suggest that PR apoptosis is augmented by RPE cell permeability, which may induce high level of VEGF and could be deleterious. The specific action of RPE permeability on PR survival and the role of Src in the retina are under investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thymus is the site of T cell development. Several stromal and hematopoietic cell types are necessary for the proper function of thymic selection and eventually peripheral immunity. Thymic epithelial cells (TECs) are essential for T cell lineage commitment, expansion, and maturation in the thymus. We were interested in developing an in vivo model in which exogenous gene expression could be transiently induced in embryonic TEC (Tet-On system). To this end, we have generated a bacterial artificial chromosome (BAC) transgenic mouse line in which the reverse tetracycline-dependent transactivator (rtTA) is expressed under the control of the Foxn1 promoter, a transcriptional factor indispensable for TEC development. To analyze the expression pattern and efficiency of this novel mouse model, we crossed the Foxn1-rtTA founder with a Tet-Responsive Element (TRE)-LacZ GFP mouse reporter to obtain a double transgenic mouse. In the presence of doxycycline, rtTA can interact with TRE and induce the expression of GFP and LacZ. In this double transgenic mouse, we observed that GFP expression was high, inducible and limited to TEC in fetal thymus. In contrast, in adult thymus, when TEC development and maturation is completed, GFP was barely detectable. Therefore, Foxn1-rtTA represents a new and efficient transgenic mouse model to induce genes of interest specifically in fetal thymic epithelium. genesis 51:717-724. © 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphodiesterases (PDEs) are responsible for the breakdown of intracellular cyclic nucleotides, from which PDE4 are the major cyclic AMP metabolizing isoenzymes found in inflammatory and immune cells. This generated greatest interest on PDE4 as a potential target to treat lung inflammatory diseases. For example, cigarette smoke-induced neutrophilia in BAL was dose and time dependently reduced by cilomilast. Beside the undesired side effects associated with the first generation of PDE4 inhibitors, the second generation of selective inhibitors such as cilomilast and roflumilast showed clinical efficacy in asthma and chronic obstrutive pulmonary diseases trials, thus re-enhancing the interest on these classes of compounds. However, the ability of PDE4 inhibitors to prevent or modulate the airway remodelling remains relatively unexplored. We demonstrated that selective PDE4 inhibitor RP 73-401 reduced matrix metalloproteinase (MMP)-9 activity and TGF-beta1 release during LPS-induced lung injury in mice and that CI-1044 inhibited the production of MMP-1 and MMP-2 from human lung fibroblasts stimulated by pro-inflammatory cytokines. Since inflammatory diseases of the bronchial airways are associated with destruction of normal tissue structure, our data suggest a therapeutic benefit for PDE4 inhibitors in tissue remodelling associated with chronic lung diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies demonstrate that intestinal inflammation is either initiated or exaggerated by a component of the normal microbiota, most likely commensal bacteria or products derived from these organisms. We review the nature of human inflammatory bowel disease, the evidence for the involvement of the normal bacterial flora in these disorders and the relevance of maintaining the integrity of the epithelial barrier. Moreover, we, and others, have shown abnormal mitochondria structure in tissue resections from patients with inflammatory bowel disease and tissues from rodents that demonstrated psychological stress-induced increases in epithelial permeability. Thus, we also consider the possibility that a defect in epithelial mitochondrial function would predispose an individual to respond to their commensal bacteria flora - no longer considering them as a beneficial passive inhabitant, but rather perceiving them as a threatening and pro-inflammatory stimulus. In support of this postulate, we discuss our recent findings from an in vitro model showing that the human colon-derived T84 cell line exposed to the metabolic stressor, dinitrophenol, and the non-pathogenic, non-invasive, Escherichia coli (strain HB101) display a loss of barrier function, increased signal transduction and increased production of the chemokine, interleukin 8.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVE; To evaluate interactive effects of volemic status and positive end-expiratory pressure (PEEP) on the plasma levels of atrial natriuretic factor (ANF) in assist-controlled mechanical ventilation (MV). DESIGN: Three successive protocols applied in randomized order to each participant. SETTING: Clinical investigation laboratory. PARTICIPANTS: Twenty-one young, healthy adults. INTERVENTIONS: The three protocols were as follows: (1) MV+PEEP, normovolemia; (2) MV+PEEP, hypervolemia; and (3) spontaneous breathing (SB), hypervolemia. In protocols 1 and 2, a preliminary period of SB lasting 2 h was followed by MV alone (0.5 h), MV+20 cm H2O PEEP (1 h), and a recovery period of SB (1.5 h). Hypervolemia was induced by the continuous i.v. infusion of 3 L of 0.9% NaCl in 5 h (protocols 2 and 3). MEASUREMENTS AND RESULTS: Heart rate, BP, and the plasma levels of immunoreactive ANF and catecholamines were measured serially. During hypervolemia, ANF significantly decreased when PEEP was added to MV (protocol 2: from 31.1 +/- 2.7 to 20.7 +/- 1.5 fmol/mL; p < 0.01). This did not occur in normovolemia (protocol 1: from 20.0 +/- to 16.7 +/- 1.2 fmol/mL; p = NS). The different effects of MV+PEEP in normovolemia and hypervolemia were not related to differences in circulating catecholamine levels. CONCLUSIONS: These results demonstrate for the first time (to our knowledge) that volemic status modulates the response of plasma ANF to PEEP in humans. The role of ANF in the water and salt retention induced by MV with PEEP might be limited to hypervolemic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to raise public awareness of the importance of early detection of airway obstruction and to enable many people who had not been tested previously to have their lung function measured, the European Lung Foundation and the European Respiratory Society (ERS) organised a spirometry testing tent during the annual ERS Congresses in 2004-2009. Spirometry was performed during the ERS Congresses in volunteers; all participants answered a simple, brief questionnaire on their descriptive characteristics, smoking and asthma. Portable spirometers were freely provided by the manufacturer. Nurses and doctors from pulmonary departments of local hospitals/universities gave their service for free. Lower limit of normal (LLN) and Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria for diagnosing and grading airway obstruction were used. Of 12,448 participants in six congress cities, 10,395 (83.5%) performed acceptable spirometry (mean age 51.0 ± 18.4 yrs; 25.5% smokers; 5.5% asthmatic). Airway obstruction was present in 12.4% of investigated subjects according to LLN criteria and 20.3% according to GOLD criteria. Through multinomial logistic regression analysis, age, smoking habits and asthma were significant risk factors for airway obstruction. Relative risk ratio and 95% confidence interval for LLN stage I, for example, was 2.9 (2.0-4.1) for the youngest age (≤ 19 yrs), 1.9 (1.2-3.0) for the oldest age (≥ 80 yrs), 2.4 (2.0-2.9) for current smokers and 2.8 (2.2-3.6) for reported asthma diagnosis. In addition to being a useful advocacy tool, the spirometry tent represents an unusual occasion for early detection of airway obstruction in large numbers of city residents with an important public health perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Prospective assessment of pedicled extrathoracic muscle flaps for the closure of large intrathoracic airway defects after noncircumferential resection in situations where an end-to-end reconstruction seemed risky (defects of > 4-cm length, desmoplastic reactions after previous infection or radiochemotherapy). METHODS: From 1996 to 2001, 13 intrathoracic muscle transpositions (6 latissimus dorsi and 7 serratus anterior muscle flaps) were performed to close defects of the intrathoracic airways after noncircumferential resection for tumor (n = 5), large tracheoesophageal fistula (n = 2), delayed tracheal injury (n = 1) and bronchopleural fistula (n = 5). In 2 patients, the extent of the tracheal defect required reinforcement of the reconstruction by use of a rib segment embedded into the muscle flap followed by temporary tracheal stenting. Patient follow-up was by clinical examination bronchoscopy and biopsy, pulmonary function tests, and dynamic virtual bronchoscopy by computed tomographic (CT) scan during inspiration and expiration. RESULTS: The airway defects ranged from 2 x 1 cm to 8 x 4 cm and involved up to 50% of the airway circumference. They were all successfully closed using muscle flaps with no mortality and all patients were extubated within 24 hours. Bronchoscopy revealed epithelialization of the reconstructions without dehiscence, stenosis, or recurrence of fistulas. The flow-volume loop was preserved in all patients and dynamic virtual bronchoscopy revealed no significant difference in the endoluminal cross surface areas of the airway between inspiration and expiration above (45 +/- 21 mm(2)), at the site (76 +/- 23 mm(2)) and below the reconstruction (65 +/- 40 mm(2)). CONCLUSIONS: Intrathoracic airway defects of up to 50% of the circumference may be repaired using extrathoracic muscle flaps when an end-to-end reconstruction is not feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ciliary body and iris are pigmented epithelial structures in the anterior eye segment that function to maintain correct intra-ocular pressure and regulate exposure of the internal eye structures to light, respectively. The cellular and molecular factors that mediate the development of the ciliary body and iris from the ocular pigmented epithelium remain to be fully elucidated. Here, we have investigated the role of Notch signaling during the development of the anterior pigmented epithelium by using genetic loss- and gain-of-function approaches. Loss of canonical Notch signaling results in normal iris development but absence of the ciliary body. This causes progressive hypotony and over time leads to phthisis bulbi, a condition characterized by shrinkage of the eye and loss of structure/function. Conversely, Notch gain-of-function results in aniridia and profound ciliary body hyperplasia, which causes ocular hypertension and glaucoma-like disease. Collectively, these data indicate that Notch signaling promotes ciliary body development at the expense of iris formation and reveals novel animal models of human ocular pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé: Chez les mammifères, les intestins sont les organes ayant le plus haut taux de renouvellement cellulaire dans l'organisme. L'épithélium intestinal se renouvelle complètement en moins d'une semaine. Il se compose de projections (villosités) et d'invaginations (cryptes) qui ont toutes deux des fonctions bien distinctes. Les cellules de l'intestin sont constamment produites à partir de cellules souches, situées dans la crypte, qui se différencient en cellules proliférantes transitoires, puis en cellules caliciformes, de Paneth, entéroendocrine ou en entérocytes. Ces cellules migrent dans leurs lieux spécifiques pour accomplir leur fonction physiologique pour finalement mourir. A cours de mon travail de thèse, j'ai étudié le rôle de la voie de signalisation de Notch dans le renouvellement cellulaire et dans le processus de l'homéostase des cellules de l'intestin marin en utilisant le système Cre-loxP pour induire la délétion des gènes Notch1, Notch2, Jaggedl et RBP-Jk. Bien que l'inactivation de Notch1 avec ou sans Jagged1, ou celle de Notch2, n'aboutissent à aucun phénotype, une déficience pour RBP-Jk, ou pour Notch1 et Notch2 simultanément, conduit au développement d'un impressionnant phénotype. Au niveau de la crypte, une rapide et importante modification des cellules apparaît: les cellules proliférantes sont devenues des cellules caliciformes qui ont perdu la capacité de se renouveler. Ces résultats impliquent la voie Notch en tant que nouvelle clé de voûte dans le maintien des cellules qui s'auto-renouvellent dans l'épithélium intestinal. Un rôle similaire a été proposé pour la voie Wnt, laquelle n'est cependant, pas affectée dans nos souris. C'est pourquoi ces deux voies sont essentielles dans le maintien de la prolifération dans les cryptes intestinales. Ce travail a aussi proposé un mécanisme par lequel la voie Notch contrôlerait l'intégrité du cycle cellulaire dans les cellules de la crypte intestinale, ceci en inhibant la transcription d'un inhibiteur du cycle cellulaire, la protéine p27KIP1. De plus, l'inactivation de RBP-Jk dans les adénomes développés par les souris APCmin induisent la différenciation de cellules tumorales en cellules caliciformes. Comme autre effet, la localisation histologique des cellules de Paneth est également affectée par la délétion de RBP-Jk ou de Notch1/Notch2, suggérant un rôle pour la voie Notch dans le compartiment des cellules de Paneth. Finalement, ce travail démontre que les cellules progénitrices de l'intestin ont besoin d'une convergence fonctionnelle des voie Wnt et Notch. Ces résultats préliminaires peuvent être considérés comme un concept pour l'utilisation d'inhibiteurs de secrétase-γ (inhibiteurs de Notch) à des fins thérapeutiques pour les cancers colorectaux. Summary The mammalian intestine has one of the highest cellular turnover rates in the body. The complete intestinal epithelium is renewed in less than a week. It is divided into spatially distinct compartments in the form of finger-like projections (villi) and flask-shaped invaginations (crypts) that are dedicated to specific functions. Intestinal cells are constantly produced from a stem cell reservoir that gives rise to proliferating transient amplifying cells, which subsequently differentiate and home to their specific compartments before dying after having fulfilled their physiological function. In this thesis project, the physiological role of the Notch signalling cascade in the marine intestine was studied. Inducible tissue specific inactivation of Notch1, Notch2, Jagged1 and RBP-Jk genes was applied to assess their role in the maintenance of intestinal homeostasis and cell fate determination. The analysis unequivocally revealed that Notch1, Notch1 and Jagged1 combined as well as Notch2 are dispensable for intestinal homeostasis and lineage differentiation. However, deficiency of RBP-Jk as well as the simultaneous inactivation of both Notch1 and Notch2 receptors unveiled a striking phenotype. In these mice, a rapid and massive conversion of proliferative crypt cells into post-mitotic goblet cells was observed. These results identify the Notch pathway as a key player for the maintenance of the proliferative crypt compartment. A similar role was implicated for the Wnt cascade, which, however, was not affected in the different tissue specific Notch signalling deficient mice. Thus, the Wnt and Notch signalling pathways are essential for the self-renewal capacity of the intestinal epithelium. Furthermore, our results suggest a molecular mechanism for Notch signalling mediated control of cell cycle regulation within the crypt. The Notch cascade inhibits expression of the cyclin-dependent kinase inhibitor p27KIP1 and thereby maintains proliferation of the intestinal progenitor cells. In addition, the inactivation of RBP-Jk in adenomas developed by APCmin mice resulted in the differentiation of tumour cells into goblet cells. Finally, Notch deficiency affected differentiated Paneth cells, suggesting that Notch may play a role in the Paneth cell compartment. In summary, this work clearly demonstrates that undifferentiated, proliferative cells in intestinal crypts require the concerted activation of the RBP-Jk-mediated Notch signalling and the Wnt cascade. In addition, our preliminary results can be considered as a "proof-of-principle" for the use of γ-secretase inhibitors for therapeutic modalities for colorectal cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: In this study, we investigated the expression of the gene encoding beta-galactosidase (Glb)-1-like protein 3 (Glb1l3), a member of the glycosyl hydrolase 35 family, during retinal degeneration in the retinal pigment epithelium (RPE)-specific 65-kDa protein knockout (Rpe65(-/-)) mouse model of Leber congenital amaurosis (LCA). Additionally, we assessed the expression of the other members of this protein family, including beta-galactosidase-1 (Glb1), beta-galactosidase-1-like (Glb1l), and beta-galactosidase-1-like protein 2 (Glb1l2).Methods: The structural features of Glb1l3 were assessed using bioinformatic tools. mRNA expression of Glb-related genes was investigated by oligonucleotide microarray, real-time PCR, and reverse transcription (RT) -PCR. The localized expression of Glb1l3 was assessed by combined in situ hybridization and immunohistochemistry.Results: Glb1l3 was the only Glb-related member strongly downregulated in Rpe65(-/-) retinas before the onset and during progression of the disease. Glb1l3 mRNA was only expressed in the retinal layers and the RPE/choroid. The other Glb-related genes were ubiquitously expressed in different ocular tissues, including the cornea and lens. In the healthy retina, expression of Glb1l3 was strongly induced during postnatal retinal development; age-related increased expression persisted during adulthood and aging.Conclusions: These data highlight early-onset downregulation of Glb1l3 in Rpe65-related disease. They further indicate that impaired expression of Glb1l3 is mostly due to the absence of the chromophore 11-cis retinal, suggesting that Rpe65 deficiency may have many metabolic consequences in the underlying neuroretina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although traditionally thought to be sterile, accumulating evidence now supports the concept that our airways harbor a microbiome. Thus far, studies have focused upon characterizing the bacterial constituents of the airway microbiome in both healthy and diseased lungs, but what perhaps provides the greatest impetus for the exploration of the airway microbiome is that different bacterial phyla appear to dominate diseased as compared with healthy lungs. As yet, there is very limited evidence supporting a functional role for the airway microbiome, but continued research in this direction is likely to provide such evidence, particularly considering the progress that has been made in understanding host-microbe mutualism in the intestinal tract. In this review, we highlight the major advances that have been made discovering and describing the airway microbiome, discuss the experimental evidence that supports a functional role for the microbiome in health and disease, and propose how this emerging field is going to impact clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gut mesodermal tissues originate from the splanchnopleural mesenchyme. However, the embryonic gastrointestinal coelomic epithelium gives rise to mesenchymal cells, whose significance and fate are little known. Our aim was to investigate the contribution of coelomic epithelium-derived cells to the intestinal development. We have used the transgenic mouse model mWt1/IRES/GFP-Cre (Wt1(cre)) crossed with the Rosa26R-EYFP reporter mouse. In the gastrointestinal duct Wt1, the Wilms' tumor suppressor gene, is specific and dynamically expressed in the coelomic epithelium. In the embryos obtained from the crossbreeding, the Wt1-expressing cell lineage produces the yellow fluorescent protein (YFP) allowing for colocalization with differentiation markers through confocal microscopy and flow cytometry. Wt1(cre-YFP) cells were very abundant throughout the intestine during midgestation, declining in neonates. Wt1(cre-YFP) cells were also transiently observed within the mucosa, being apparently released into the intestinal lumen. YFP was detected in cells contributing to intestinal vascularization (endothelium, pericytes and smooth muscle), visceral musculature (circular, longitudinal and submucosal) as well as in Cajal and Cajal-like interstitial cells. Wt1(cre-YFP) mesenchymal cells expressed FGF9, a critical growth factor for intestinal development, as well as PDGFRα, mainly within developing villi. Thus, a cell population derived from the coelomic epithelium incorporates to the gut mesenchyme and contribute to a variety of intestinal tissues, probably playing also a signaling role. Our results support the origin of interstitial cells of Cajal and visceral circular muscle from a common progenitor expressing anoctamin-1 and SMCα-actin. Coelomic-derived cells contribute to the differentiation of at least a part of the interstitial cells of Cajal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) is responsible for Na(+) and fluid absorption across colon, kidney, and airway epithelia. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is a secreted, innate defense protein and an autocrine inhibitor of ENaC that is highly expressed in airway epithelia. While SPLUNC1 has a bactericidal permeability-increasing protein (BPI)-type structure, its NH2-terminal region lacks structure. Here we found that an 18 amino acid peptide, S18, which corresponded to residues G22-A39 of the SPLUNC1 NH2 terminus inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold), while SPLUNC1 protein lacking this region was without effect. S18 did not inhibit the structurally related acid-sensing ion channels, indicating specificity for ENaC. However, S18 preferentially bound to the βENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Unlike control, CF human bronchial epithelial cultures (HBECs) where airway surface liquid (ASL) height was abnormally low (4.2 ± 0.6 μm), addition of S18 prevented ENaC-led ASL hyperabsorption and maintained CF ASL height at 7.9 ± 0.6 μm, even in the presence of neutrophil elastase, which is comparable to heights seen in normal HBECs. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, suggesting that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the S18 peptide suggests that this peptide may be suitable for treating CF lung disease.