998 resultados para Airborne radio-echo sounding


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Filchner-Ronne ice shelf, which drains most of the marine-based portions of the West Antarctic ice sheet, is the largest ice shelf on Earth by volume. The origin and properties of the ice that constitutes this shelf are poorly understood, because a strong reflecting interface within the ice and the diffuse nature of the ice?ocean interface make seismic and radio echo sounding data difficult to interpret. Ice in the upper part of the shelf is of meteoric origin, but it has been proposed that a basal layer of saline ice accumulates from below. Here we present the results of an analysis of the physical and chemical characteristics of an ice core drilled almost to the bottom of the Ronne ice shelf. We observe a change in ice properties at about 150 m depth, which we ascribe to a change from meteoric ice to basal marine ice. The basal ice is very different from sea ice formed at the ocean surface and we propose a formation mechanism in which ice platelets in the water column accrete to the bottom of the ice shelf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glacier thickness is an important factor in the course of glacier retreat in a warming climate. Thiese study data presents the results (point data) of GPR surveys on 66 Austrian mountain glaciers carried out between 1995 and 2014. The glacier areas range from 0.001 to 18.4 km**2, and their ice thickness has been surveyed with an average density of 36 points/km**2 . The glacier areas and surface elevations refer to the second Austrian glacier inventory (mapped between 1996 and 2002). According to the glacier state recorded in the second glacier inventory, the 64 glaciers cover an area of 223.3±3.6 km**3. Maps of glacier thickness have been calculated by Fischer and Kuhn (2013) with a mean thickness of 50±3 m and contain an glacier volume of 11.9±1.1 km**3. The mean maximum ice thickness is 119±5 m. The ice thickness measurements have been carried out with the transmitter of Narod and Clarke (1994) combined with restively loaded dipole antennas (Wu and King, 1965; Rose and Vickers, 1974) at central wavelengths of 6.5 (30 m antenna length) and 4.0 MHz (50 m antenna length). The signal was recorded trace by trace with an oscilloscope. 168 m/µs as used by Haeberli et al. (1982), Bauder (2001), and Narod and Clarke (1994), the signal velocity in air is assumed to be 300 m/µs. Details on the method can be are found in Fischer and Kuhn (2013), as well as Span et al. (2005) and Fischer et al. (2007).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a compact lightweight impulse radar for radio-echo sounding of subsurface structures designed specifically for glaciological applications. The radar operates at frequencies between 10 and 75 MHz. Its main advantages are that it has a high signal-to-noise ratio and a corresponding wide dynamic range of 132 dB due mainly to its ability to perform real-time stacking (up to 4096 traces) as well as to the high transmitted power (peak voltage 2800 V). The maximum recording time window, 40 ?s at 100 MHz sampling frequency, results in possible radar returns from as deep as 3300 m. It is a versatile radar, suitable for different geophysical measurements (common-offset profiling, common midpoint, transillumination, etc.) and for different profiling set-ups, such as a snowmobile and sledge convoy or carried in a backpack and operated by a single person. Its low power consumption (6.6 W for the transmitter and 7.5 W for the receiver) allows the system to operate under battery power for mayor que7 hours with a total weight of menor que9 kg for all equipment, antennas and batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amundsenisen is an ice field, 80 km2 in area, located in Southern Spitsbergen, Svalbard. Radio-echo sounding measurements at 20 MHz show high intensity returns from a nearly flat basal reflector at four zones, all of them with ice thickness larger than 500m. These reflections suggest possible subglacial lakes. To determine whether basal liquid water is compatible with current pressure and temperature conditions, we aim at applying a thermo mechanical model with a free boundary at the bed defined as solution of a Stefan problem for the interface ice-subglaciallake. The complexity of the problem suggests the use of a bi-dimensional model, but this requires that well-defined flowlines across the zones with suspected subglacial lakes are available. We define these flow lines from the solution of a three-dimensional dynamical model, and this is the main goal of the present contribution. We apply a three-dimensional full-Stokes model of glacier dynamics to Amundsenisen icefield. We are mostly interested in the plateau zone of the icefield, so we introduce artificial vertical boundaries at the heads of the main outlet glaciers draining Amundsenisen. At these boundaries we set velocity boundary conditions. Velocities near the centres of the heads of the outlets are known from experimental measurements. The velocities at depth are calculated according to a SIA velocity-depth profile, and those at the rest of the transverse section are computed following Nye’s (1952) model. We select as southeastern boundary of the model domain an ice divide, where we set boundary conditions of zero horizontal velocities and zero vertical shear stresses. The upper boundary is a traction-free boundary. For the basal boundary conditions, on the zones of suspected subglacial lakes we set free-slip boundary conditions, while for the rest of the basal boundary we use a friction law linking the sliding velocity to the basal shear stress,in such a way that, contrary to the shallow ice approximation, the basal shear stress is not equal to the basal driving stress but rather part of the solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While summer Arctic sea-ice extent has decreased over the past three decades, it is subject to large interannual and regional variations. Methodological challenges in measuring ice thickness continue to hamper our understanding of the response of the ice-thickness distribution to recent change, limiting the ability to forecast sea-ice change over the next decade. We present results from a 2400 km long pan-Arctic airborne electromagnetic (EM) ice thickness survey in April 2009, the first-ever large-scale EM thickness dataset obtained by fixed-wing aircraft over key regions of old ice in the Arctic Ocean between Svalbard and Alaska. The data provide detailed insight into ice thickness distributions characteristic for the different regions. Comparison with previous EM surveys shows that modal thicknesses of old ice had changed little since 2007, and remained within the expected range of natural variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation was undertaken in order to locate fish using an echo sounder in Dhudawa Reservoir, Madhya Pradesh, India. In general, fish were found to be distributed either towards off-bottom or mid-water areas. Echo sounding is recommended for use in other reservoirs for fish detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considerable efforts are currently invested into the setup of a Global Climate Observing System (GCOS) for monitoring climate change over the coming decades, which is of high relevance given concerns on increasing human influences. A promising potential contribution to the GCOS is a suite of spaceborne Global Navigation Satellite System (GNSS) occultation sensors for global long-term monitoring of atmospheric change in temperature and other variables with high vertical resolution and accuracy. Besides the great importance with respect to climate change, the provision of high quality data is essential for the improvement of numerical weather prediction and for reanalysis efforts. We review the significance of GNSS radio occultation sounding in the climate observations context. In order to investigate the climate change detection capability of GNSS occultation sensors, we are currently performing an end-to-end GNSS occultation observing system simulation experiment over the 25-year period 2001 to 2025. We report on this integrated analysis, which involves in a realistic manner all aspects from modeling the atmosphere via generating a significant set of stimulated measurements to an objective statistical analysis and assessment of 2001–2025 temporal trends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal convection in the Antarctic and Greenland ice sheets has been dismissed on the grounds that radio-echo stratigraphy is undisturbed for long distances. However, the undisturbed stratigraphy lies, for the most part, above the density inversion in polar ice sheets and therefore does not disprove convection. An echo-free zone is widespread below the density inversion, yet nobody has cited this as a strong indication that convection is indeed present at d�pth. A generalized Rayleigh criterion for thermal convection in e1astic-viscoplastic polycrystalline solids heated from below is developed and applied to ice-sheet convection. An infinite Rayleigh number at the onset of primary creep decreases with time and becomes constant when secondary creep dominates, suggesting that any thermal buoyancy stress can initiate convection but convection cannot be sustained below a buoyancy stress of about 3 kPa. An analysis of the temperature profile down the Byrd Station core hole suggests that about 1000 m of ice below the density inversion will sustain convection. Creep along the Byrd Station strain network, radar sounding in East Antarctica, and seismic sounding in West Antarctica are examined for evidence of convective creep superimposed on advective creep. It is concluded that the evidence for convection is there, if we look for it with the intention offinding it.