994 resultados para Air Pollutants
Resumo:
Kuluvien vuosien aikana ei ole tehty kattavia tutkimuksia levyteollisuuden sähkönkulutuksista, joten on aika selvittää suurimpien sähkökäyttöjen kulutukset sekä muodostaa tutkittaville tehtaille energiataseet. Tutkittavia tehtaita ovat OSB- ja lastulevytehtaat. Yksittäisten sähkömoottoreiden kulutukset saadaan selville käyttämällä hyväksi teoreettisia lähteitä, kenttä-ja laboratoriotutkimusta. Ympäristölainsäädäntö ja siihen kiinteästi liittyvä lupakäytäntö muodostavat levyteollisuudelle yhden viimeaikojen suurimmista haasteista. Tulevaisuudessa lainsäädäntö tulee vielä entisestäänkin kiristymään. Euroopan ympäristölainsäädäntö perustuu pitkälti yhtenäislupadirektiiviin eli IPPC-direktiiviin. Direktiivin keskeinen osa on ympäristöluvan hankkiminen, koska teollista toimintaa ei voi harjoittaa ilman hyväksyttyä viranomaisen lupaa. Lupa myös velvoittaa toiminnanharjoittajan käyttämään parasta käyttökelpoista tekniikkaa päästöjen kontrolloinnissa. Yhdysvalloissa parhaan käyttökelpoisen tekniikan (BAT) vaatimus on sisälletty ympäristövirasto EPA:n MACT-standardeihin. Levyteollisuuden tehtaista syntyvät päästöt ovat hyvin samankaltaisia. Tehtaista on helposti erotettavissa kaksi suurta päästölähdettä, joita ovat kuivaus ja kuumapuristus. Merkittävimpiä päästöjä ovat haihtuvat orgaaniset yhdisteet, hiukkaset, typen oksidit, hiilimonoksidi ja rikkidioksidit. Työn loppuosa on varattu tuotantojen kustannusvaikutusten ja tunnuslukujen tarkasteluille. Saatavilla tiedoilla on keskeinen rooli tehtaiden jokapäiväisessä toiminnassa. Analysoinnin tarpeeseen vaikuttaa osaltaan nykyisen toimintaympäristön muutosherkkyys ja levymarkkinoiden kireä kilpailutilanne.
Resumo:
Voici la quatrième et dernière partie des résultats d'une veille bibliographique sur la surveillance biologique de l'exposition aux produits chimiques en milieu de travail (SBEPCMT) mise en place par un réseau francophone multidisciplinaire.
Resumo:
PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240Â 000 indoor radon concentration (IRC) measurements in about 150Â 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.
Resumo:
Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO2 photocatalyst was mostly used. In transient studies platinized TiO2 was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often emitted by various industries. The PCO of VOCs was studied using a continuous-flow mode. The PCO of MTBE and TBA was also studied by transient mode, in which carbon dioxide, water, and acetone were identified as the main gas-phase products. The volatile products of thermal catalytic oxidation (TCO) of MTBE included 2-methyl-1-propene (2-MP), carbon monoxide, carbon dioxide and water; TBA decomposed to 2-MP and water. Continuous PCO of 4 TBA proceeded faster in humid air than dry air. MTBE oxidation, however, was less sensitive to humidity. The TiO2 catalyst was stable during continuous PCO of MTBE and TBA above 373 K, but gradually lost activity below 373 K; the catalyst could be regenerated by UV irradiation in the absence of gas-phase VOCs. Sulphur dioxide, carbon monoxide, carbon dioxide and water were identified as ultimate products of PCO of ethanethiol. Acetic acid was identified as a photocatalytic oxidation by-product. The limits of ethanethiol concentration and temperature, at which the reactor performance was stable for indefinite time, were established. The apparent reaction kinetics appeared to be independent of the reaction temperature within the studied limits, 373 to 453 K. The catalyst was completely and irreversibly deactivated with ethanethiol TCO. Volatile PCO products of MA included ammonia, nitrogen dioxide, nitrous oxide, carbon dioxide and water. Formamide was observed among DMA PCO products together with others similar to the ones of MA. TCO for both substances resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide and water. No deactivation of the photocatalyst during the multiple long-run experiments was observed at the concentrations and temperatures used in the study. PCO of MA was also studied in the aqueous phase. Maximum efficiency was achieved in an alkaline media, where MA exhibited high fugitivity. Two mechanisms of aqueous PCO – decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite - lead ultimately to carbon dioxide, water, ammonia and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. This finding helped in better understanding of the gasphase PCO pathways. The PCO kinetic data for VOCs fitted well to the monomolecular Langmuir- Hinshelwood (L-H) model, whereas TCO kinetic behaviour matched the first order process for volatile amines and the L-H model for others. It should be noted that both LH and the first order equations were only the data fit, not the real description of the reaction kinetics. The dependence of the kinetic constants on temperature was established in the form of an Arrhenius equation.
Resumo:
In Brazil, very little experimental work on measurements of indoor air pollutant levels has been done. Nowadays, increasing attention is being given to indoor air quality and the health problems associated with buildings and the indoor work environment. The scope of this paper is to review the major pollutants found in indoor environments and their sources. Subsequently, exposure to indoor air pollutants and health effects are considered. The review concludes by briefly addressing assessment of indoor air quality in Brazil and research needs.
Resumo:
A new passive sampling system for monitoring NO2 in air has been developed to measure gas concentrations in indoor and outdoor air. The sampler is inexpensive, and easy to construct and operate. Nitrogen dioxide forms a derivative after reaction with a filter coated with triethanolamine and ethyleneglycol. The nitrogen dioxide derivative is extracted from the filter, and the concentration is determined by colorimetry. To test the sampler for measuring ambient level nitrogen dioxide, measurements were carried out inside homes and in a range of workplace environments.
Resumo:
This study is a result of undergraduate student participation in the Environmental Chemistry discipline provided by the Chemistry Institute/UFBA. The students were involved in the development of passive samplers, a project of the LAQUAM (Environmental Analytical Chemistry Laboratory). The students' residences and other neighborhoods were used to create a passive sampling network, allowing the measurement of atmospheric levels of pollutants in urban areas and in those under industrial influence. The assembly of the passive samplers, including impregnation of filters and chemical analysis were part of the students' practice tasks. The results were analyzed taking into consideration the Brazilian legislation.
Resumo:
Foliar analysis of biochemical parameters were carried out in order to investigate the influence of air pollutants on two tropical tree species (Licania tomentosa (Benth.) and Bauhinia forfÃcata (Link.)). Special attention was given to tropospheric ozone due to the fact that concentration levels in the region were found to be up to 140 µg m-3 for a 4 h average time, which is well above the value that can cause injuries to orchides and tobacco (59 µg m-3). Other pollutants such as nitrogen and sulphur oxides were measured and their ambient concentrations were also associated to biochemical alterations in the investigated species.
Resumo:
The objective of this study was to assess a new monitoring technique of particulate and trace metals in the atmosphere via the use of a passive sampler of air pollutants in the city of Goiânia. The average particulate weight and average concentrations of metals Fe, Cr, Zn, Pb, Cu, Mn, and Cd were 0.1104 g and 257.5; 23.4; 17.8; 6.7; 1.9; 0.8; 0.2 μg/m²/day, respectively. Higher Pb and Cr concentrations were obtained in areas with intense traffic. This study revealed that it is possible to monitor trace metals with passive sampling, developed at a low cost and operational facility.
Resumo:
With the occurrence of fossil fuels such as oil, gas and coal we found new sources of energy that have played a critical role in the progress of our modern society. Coal is very ample compared to the other two fossil fuels. Global coal reserves at the end of 2005 were estimated at 847,5 billion tones. Along with the major energy sources, coal is the most fast growing fuel on a global basis, it provides 26% of primary energy needs and remains essential to the economies of many developed and developing countries. Coal-fired power generation accounts for 41% of the world‘s total electricity production and in some countries, such as South Africa, Poland, China, Australia, Kazakhstan and India is on very high level. Still, coal utilization represents challenges related to high emissions of air pollutants such as sulphur and nitrogen dioxides, particulate matter, mercury and carbon dioxide. In relation to these a number of technologies have been developed and are in marketable use, with further potential developments towards ―Near Zero Emission‖ coal plants. In present work, coals mined in Russia and countries of Former Soviet Union were reviewed. Distribution of coal reserves on the territory of Russia and the potential for power generation from coal-fired plants across Russia was shown. Physical and chemical properties of coals produced were listed and examined, as main factor influencing on design of the combustion facility and incineration process performance. The ash-related problems in coal-fired boilers were described. The analysis of coal ash of Russia and countries of Former Soviet Union were prepared. Feasible combustion technologies also were reviewed.
Resumo:
A comparative study of elements deposited on tree bark was carried out for urban and periurban areas of two of the most important cities in Argentina. The content of Fe, Mg, Al, Mn, Zn, Pb, Ba, Cr, Hg, Cu, Ni, Cd and Sb was determined by inductively coupled plasma atomic emission spectrometry (ICP-OES) in Morus alba tree bark collected in the cities of Buenos Aires and Mendoza. The main air pollutants detected in the Buenos Aires urban area were Ba, Cr, Cu and Ni and indicate significative difference from the Mendoza urban and periurban areas. Significantly, higher concentrations of Zn, Ba, Cr and Cu were recorded in the periurban area of the city of Buenos Aires than in Mendoza. Bark samples were strongly influenced by dust and show Al, Fe, Mg and other element accumulations that indicate that soil particles were carried out by wind. Elements like Ba and Zn, commonly linked to traffic emissions, showed the highest concentrations in the Buenos Aires metropolitan area, possibly due to more intensive vehicular traffic. Our results indicated that intensity of vehicular traffic and not city structure is responsible for air pollution.
Tekniset vaatimukset huonekohtaisen ilmanpuhdistimen valitsemiseksi sisäilmaongelmaisessa kohteessa
Resumo:
Tässä työssä tarkastellaan rakennusten sisäilman laatua heikentäviä epäpuhtauksia sekä niiden suodattamiseen huonekohtaisissa ilmanpuhdistimissa käytettäviä suodatustekniikoita. Tavoitteena oli selvittää ilmanpuhdistimien soveltuvuus sisäilmaongelmista kärsiviin kohteisiin. Ilmanpuhdistimia testattiin laboratoriossa ja testitulosten perusteella arvioitiin niiden teknisiä ominaisuuksia. Lisäksi laadittiin valintakriteerit huonekohtaisen ilmanpuhdistimen valitsemiseksi sisäilmaongelmaisessa kohteessa. Diplomityö tehtiin Helsingin kaupungin kiinteistöviraston Tilakeskuksessa vastaamaan tarpeeseen selvittää ilmanpuhdistimien teknisiä ominaisuuksia. Laboratoriotesteissä laitteista löydettiin eroavaisuuksia, ja tulosten perusteella laitteet asetettiin paremmuusjärjestykseen. Työssä suoritetun tutkimuksen perusteella voidaan todeta, että nykyisin markkinoilla olevat huonekohtaiset ilmanpuhdistimet soveltuvat pääosin melko heikosti sisäilmaongelmien ratkaisemiseen. Tähän syynä on erityisesti laitteiden aiheuttama suuri melupäästö.
Resumo:
Currently widely accepted consensus is that greenhouse gas emissions produced by the mankind have to be reduced in order to avoid further global warming. The European Union has set a variety of CO2 reduction and renewable generation targets for its member states. The current energy system in the Nordic countries is one of the most carbon free in the world, but the aim is to achieve a fully carbon neutral energy system. The objective of this thesis is to consider the role of nuclear power in the future energy system. Nuclear power is a low carbon energy technology because it produces virtually no air pollutants during operation. In this respect, nuclear power is suitable for a carbon free energy system. In this master's thesis, the basic characteristics of nuclear power are presented and compared to fossil fuelled and renewable generation. Nordic energy systems and different scenarios in 2050 are modelled. Using models and information about the basic characteristics of nuclear power, an opinion is formed about its role in the future energy system in Nordic countries. The model shows that it is possible to form a carbon free Nordic energy system. Nordic countries benefit from large hydropower capacity which helps to offset fluctuating nature of wind power. Biomass fuelled generation and nuclear power provide stable and predictable electricity throughout the year. Nuclear power offers better energy security and security of supply than fossil fuelled generation and it is competitive with other low carbon technologies.
Resumo:
There is a demonstrable association between exposure to air pollutants and deaths due to cardiovascular diseases. The objective of this study was to estimate the effects of exposure to sulfur dioxide on mortality due to circulatory diseases in individuals 50 years of age or older residing in São José dos Campos, SP. This was a time-series ecological study for the years 2003 to 2007 using information on deaths due to circulatory disease obtained from Datasus reports. Data on daily levels of pollutants, particulate matter, sulfur dioxide (SO2), ozone, temperature, and humidity were obtained from the São Paulo State Environmental Agency. Moving average models for 2 to 7 days were calculated by Poisson regression using the R software. Exposure to SO2 was analyzed using a unipollutant, bipollutant or multipollutant model adjusted for mean temperature and humidity. The relative risks with 95%CI were obtained and the percent decrease in risk was calculated. There were 1928 deaths with a daily mean (± SD) of 1.05 ± 1.03 (range: 0-6). Exposure to SO2 was significantly associated with mortality due to circulatory disease: RR = 1.04 (95%CI = 1.01 to 1.06) in the 7-day moving average, after adjusting for ozone. There was an 8.5% decrease in risk in the multipollutant model, proportional to a decrease of SO2 concentrations. The results of this study suggest that residents of medium-sized Brazilian cities with characteristics similar to those of São José dos Campos probably have health problems due to exposure to air pollutants.
Resumo:
Exposure to air pollutants is associated with hospitalizations due to pneumonia in children. We hypothesized the length of hospitalization due to pneumonia may be dependent on air pollutant concentrations. Therefore, we built a computational model using fuzzy logic tools to predict the mean time of hospitalization due to pneumonia in children living in São José dos Campos, SP, Brazil. The model was built with four inputs related to pollutant concentrations and effective temperature, and the output was related to the mean length of hospitalization. Each input had two membership functions and the output had four membership functions, generating 16 rules. The model was validated against real data, and a receiver operating characteristic (ROC) curve was constructed to evaluate model performance. The values predicted by the model were significantly correlated with real data. Sulfur dioxide and particulate matter significantly predicted the mean length of hospitalization in lags 0, 1, and 2. This model can contribute to the care provided to children with pneumonia.