979 resultados para Aging of seeds
Resumo:
In Brazil, although the coffee plantations are predominantly grown under full sunlight, the use of agroforestry systems can lead to socioeconomic advantages, thus providing a favorable environment to the crop by promoting its sustainability as well as environmental preservation. However, there is a lack of information on physiological quality of the coffee seeds produced under different levels of solar radiation. Within this context, the objective of this study was to evaluate the influence of different levels of solar radiation and maturation stages on the physiological quality of coffee (Coffea arabica L.) seeds, cv. Acaiá Cerrado MG-1474. Three levels of solar radiation (plants grown under full sunlight; under plastic screens of 35% shading; and under plastic screens of 50% shading) and three maturation stages (cherry, greenish-yellow and green) were assessed. Physiological quality of seeds was assessed by using germination test, first count of germination, abnormal seedlings, dead seeds, and seedlings with open cotyledonary leaves. Electrophoretic analysis of isoenzymes catalase, esterase, superoxide dismutase and peroxidase was also performed. With the evolution of development the coffee seeds presents increases on physiological quality, and at its beginning the seeds show improvements on quality with the reduction of solar radiation.
Resumo:
The effect of mixture of seeds of Brachiaria brizantha, cv. Marandu, with different sources, granulometry, and phosphatic fertilizer doses during various periods of exposure on the physiological potential of the seeds has been assessed. The treatments consisted in seed exposure during periods of 0, 3, 6, 12, 24, 36, 48, 72, 96, and 120 h to the following fertilizers: ground granulated single superphosphate (SS), and powdered (SSp); and ground granulated ammonium monophosphate (AMP), at doses of 40 and 80 kg P2O5 ha-1. Tests of germination, tetrazolium, moisture content, and vigor (first count, electrical conductivity, emergence, emergence speed, and fresh mass of seedlings) were performed. It has been concluded that seed physiological potential of B. brizantha cv. Marandu is reduced with increase on the exposure period to phosphatic fertilizer. Such effect, however, is dependent on the product source, granulometry, and dose. SSp was the most harmful to seeds, followed by SSp and AMP, respectively. Moreover, considering a 60% germination rate as acceptable, it may be inferred that seeds can be kept in contact with AMP and SSp, in dose of 80 kg of P2O5 ha-1, respectively, for periods of 71.2 and 16.2 hours.
Resumo:
Determination of seed physiological maturity and ideal moment for harvesting fruits to extract their seeds are important aspects to produce seeds with high quality. To identify the best period for harvesting eggplant fruits, associated with ideal resting period of the fruit for extracting seeds, an eggplant production field was installed in municipality of Ijaci, in the State of Minas Gerais, Southwestern Brazil. The fruits were harvested at periods of 49, 56, 63, 70, and 77 days after pollination (DAP). The seeds of fruits harvested in each period were manually extracted immediately after harvest or after a post-harvest resting period of seven days, under a shed. The physiological quality of seeds was assessed by tests of: germination percentage; germination and emergence speed indexes; and electrical conductivity; which were carried out in the Central Seed Laboratory, Federal University of Lavras. Electrophoretic analyses of isoenzymes: catalase (CAT); esterase (EST); superoxide dismutase (SOD); and peroxidase (PO), were also therein performed. Results of germination and vigor of seeds have showed that the best period for harvesting the fruit is around 70 DAP; and that seeds should be extracted immediately after harvest. Electrophoretic analysis of enzymes has showed immaturity for eggplant seeds, harvested after 49 DAP.
Resumo:
The difficulty on identifying, lack of segregation systems and absence of suitable standards for coexistence of non trangenic and transgenic soybean are contributing for contaminations that occur during productive system. The objective of this study was to evaluate the efficiency of two methods for detecting mixtures of seeds genetically modified (GM) into samples of non-GM soybean, in a way that seed lots can be assessed within the standards established by seed legislation. Two sizes of soybean samples (200 and 400 seeds), cv. BRSMG 810C (non-GM) and BRSMG 850GRR (GM), were assessed with four contamination levels (addition of GM seeds, for obtaining 0.0%, 0.5%, 1.0%, and 1.5% contamination), and two detection methods: immunoassay of lateral flux (ILF) and bioassay (pre-imbibition into 0.6% herbicide solution; 25 ºC; 16 h). The bioassay is efficient in detecting presence of GM seeds in seed samples of non-GM soybean, even for contamination lower than 1.0%, provided that seeds have high physiological quality. The ILF was positive, detecting the presence of target protein in contaminated samples, indicating test effectiveness. There was significant correlation between the two detection methods (r = 0.82; p < 0.0001). Sample size did not influence efficiency of the two methods in detecting presence of GM seeds.
Resumo:
Seed moisture content is significant in the handling and processing of seeds. This work therefore determined the physical properties of Locust bean seeds as functions of seed moisture content in the moisture range of 5.9 – 28.2% dry basis. Mohsenin, Stepanoff and ASAE standard methods were used in determining the properties. Increases in seed dimensions vitz length = 10.2±1.0 – 11.3±0.9 mm; width = 8.5±0.8 – 9.1±0.6 mm; surface area = 191.2±24.6 – 208.3±26.3 mm2 ; geometric mean diameter = 7.78±0.49 – 8.12±0.03 and arithmetic mean diameter = 8.06±0.56 – 8.34±0.49 mm were recorded. Seed thickness = 5.49±0.43 – 5.26±0.62 mm; sphericity = 0.75±0.04 – 0.71±0.03; true density = 1251.96±55.5 - 1222±62.16 kgm-3 and porosity = 48.4±2.14 – 41.9±3.78 decreased. Static coefficient of friction increased on plywood (0.5±0.02 – 0.6±0.01), glass (0.4±0.05 – 0.5±0.01) and decreased on aluminium (0.5±0.02 – 0.5±0.04). A data of the physical properties of Locust bean; Parkia biglobosa was developed. This is useful for the design and development of equipment necessary for its handling and processing.
Resumo:
Background and Aims: Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds. Methods: Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits. Key Results: Whilst population mass maturity was reached at 33–36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period. Conclusions: Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors.
Resumo:
The endosperm of seeds of Sesbania virgata (Cav.) Pers. accumulates galactomannan as a cell wall storage polysaccharide. It is hydrolysed by three enzymes, one of them being alpha-galactosidase. A great amount of protein bodies is found in the cytoplasm of endospermic cells, which are thought to play the major role as a nitrogen reserve in this seed. The present work aimed at understanding how the production of enzymes that degrade storage compounds is controlled. We performed experiments with addition of inhibitors of transcription (actinomycin-d and alpha-amanitin) and translation (cycloheximide) during and after germination. In order to follow the performance of storage mobilisation, we measured fresh mass, protein contents and alpha-galactosidase activity. All the inhibitors tested had little effect on seed germination and seedling development. Actinomycin-d and cycloheximide provoked a slight inhibition of the storage protein degradation and concomitantly lead to an elevation of the alpha-galactosidase activity. Although alpha-amanitin showed some effect on seedling development at latter stages, it presented the former effect and did not change galactomannan degradation performance. Our data suggest that some of the proteases may be synthesised de novo, whereas alpha-galactosidase seems to be present in the endosperm cells probably as an inactive polypeptide in the protein bodies, being probably activated by proteolysis when the latter organelle is disassembled. These evidences suggest the existence of a connection between storage proteins and carbohydrates mobilisation in seeds of S. virgata, which would play a role by assuring a balanced afflux of the carbon and nitrogen to the seedling development.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this study was to analyze the germination of seeds of Albizia hassleri under different temperatures. A completely random design arranged as a split plot for temperatures regimes, with 11 seed lots and four replications of 15 seeds was used. The plot was represented by the various lots and the sub plots for different temperatures. The means were compared by Scott-Knott test at 5% probability. The temperatures used were: a) constant: 20, 25 and 30 degrees C, and b) alternating: 20-30 and 25-35 degrees C. For all 11 seed lots the mean germination was 90%, speed germination index (IVG) was 5.059, fresh matter of seedlings (MMF) was 0.0628 g and dry matter (MMS) 0.0499 g. The variation coefficient (CV) between plots ranged from 8.48% for germination to 51.71% for dry matter of seedlings and sub plot of 6.77% to 60.45% for germination and MMS. These high values of CV, tested for MMS and MMF, indicate low repeatability of results within each treatment. In general, the IVG obtained at temperatures of 20 and 25 degrees C was lower than those in temperatures of 30, 20-30 and 25-35 degrees C. The best temperature for IVG was the alternating 25-35 degrees C and constant 30 degrees C. The germination test can be conducted at 30, 20-30 and 25-35 degrees C for 19 days.
Resumo:
The electrical conductivity test is still an excellent tool to evaluate the effect of seeds of various forest and agricultural species and recent studies have been conducted aiming at verifying its application in forest seeds. The objective of this study was to establish a specific methodology to test the electrical conductivity of forest seeds of Zeyheria tuberculosis. Four lots of seeds were used, which were submitted to the germination test, evaluating the percentage of germination, germination speed index and dry mass of seedlings. For the electrical conductivity test, five replicates of 20 seeds installed in three volumes of deionized water (75, 100 and 125 mL) were used and eight periods for seed imbibitions (2, 4, 6, 12, 18, 24, 48 and 72 hour) at 25 degrees C were allowed. The statistical design used was completely random; the comparison of means was performed by Tukey test at 5 % probability. Lot II showed higher germination percentage and speed. The electrical conductivity test allows discrimination of the same batch by the germination test under laboratory conditions. It was possible to separate the seed lot presenting better physiological quality (lot II) from among the other lots. It was recommended the use of 75 or 125 mL of deionized water at a temperature of 25 degrees C to perform the electrical conductivity test.
Resumo:
Plant nutrition can positively influence quality of seeds by improving plant tolerance to adverse climate. In this context, silicon is currently considered a micronutrient and it is beneficial to plant growth, especially Poaceaes such as white oat and wheat, thereby improving physiological quality of seeds. This study had the objective of evaluating the effects of silicon leaf application on plant tillering, silicon levels and physiological quality of white oat and wheat seeds besides establishing correlations between them. Two experiments were carried out in winter with white oat and wheat. The experimental design was the completely randomized block with eight replications. Treatments consisted of foliar application of silicon (0.8% of soluble silicon, as stabilized orthosilicic acid) and a control (with no application). Silicon levels in leaves were determined at flowering whereas the number of plants and panicles/spikes per area was counted right before harvest. Seed quality was evaluated right after harvest through mass, germination and vigor tests. Data was submitted to variance analysis and means were compared by the Tukey test at a probability level of 5%. Person's linear correlation test was performed among silicon level in plants, tillering and seed quality data. Silicon leaf application increases root and total length of white oat seedlings as an effect of higher Si level in leaves. Silicon leaf application increases mass of wheat seeds without affecting germination or vigor.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)