850 resultados para Agent Oriented software engineering
Resumo:
Several studies have developed metrics for software quality attributes of object-oriented designs such as reusability and functionality. However, metrics which measure the quality attribute of information security have received little attention. Moreover, existing security metrics measure either the system from a high level (i.e. the whole system’s level) or from a low level (i.e. the program code’s level). These approaches make it hard and expensive to discover and fix vulnerabilities caused by software design errors. In this work, we focus on the design of an object-oriented application and define a number of information security metrics derivable from a program’s design artifacts. These metrics allow software designers to discover and fix security vulnerabilities at an early stage, and help compare the potential security of various alternative designs. In particular, we present security metrics based on composition, coupling, extensibility, inheritance, and the design size of a given object-oriented, multi-class program from the point of view of potential information flow.
Resumo:
Refactoring focuses on improving the reusability, maintainability and performance of programs. However, the impact of refactoring on the security of a given program has received little attention. In this work, we focus on the design of object-oriented applications and use metrics to assess the impact of a number of standard refactoring rules on their security by evaluating the metrics before and after refactoring. This assessment tells us which refactoring steps can increase the security level of a given program from the point of view of potential information flow, allowing application designers to improve their system’s security at an early stage.
Resumo:
We present a hierarchical model for assessing an object-oriented program's security. Security is quantified using structural properties of the program code to identify the ways in which `classified' data values may be transferred between objects. The model begins with a set of low-level security metrics based on traditional design characteristics of object-oriented classes, such as data encapsulation, cohesion and coupling. These metrics are then used to characterise higher-level properties concerning the overall readability and writability of classified data throughout the program. In turn, these metrics are then mapped to well-known security design principles such as `assigning the least privilege' and `reducing the size of the attack surface'. Finally, the entire program's security is summarised as a single security index value. These metrics allow different versions of the same program, or different programs intended to perform the same task, to be compared for their relative security at a number of different abstraction levels. The model is validated via an experiment involving five open source Java programs, using a static analysis tool we have developed to automatically extract the security metrics from compiled Java bytecode.
Resumo:
Designing the smart grid requires combining varied models. As their number increases, so does the complexity of the software. Having a well thought architecture for the software then becomes crucial. This paper presents MODAM, a framework designed to combine agent-based models in a flexible and extensible manner, using well known software engineering design solutions (OSGi specification [1] and Eclipse plugins [2]). Details on how to build a modular agent-based model for the smart grid are given in this paper, illustrated by an example for a small network.
Resumo:
Agent-based modelling (ABM), like other modelling techniques, is used to answer specific questions from real world systems that could otherwise be expensive or impractical. Its recent gain in popularity can be attributed to some degree to its capacity to use information at a fine level of detail of the system, both geographically and temporally, and generate information at a higher level, where emerging patterns can be observed. This technique is data-intensive, as explicit data at a fine level of detail is used and it is computer-intensive as many interactions between agents, which can learn and have a goal, are required. With the growing availability of data and the increase in computer power, these concerns are however fading. Nonetheless, being able to update or extend the model as more information becomes available can become problematic, because of the tight coupling of the agents and their dependence on the data, especially when modelling very large systems. One large system to which ABM is currently applied is the electricity distribution where thousands of agents representing the network and the consumers’ behaviours are interacting with one another. A framework that aims at answering a range of questions regarding the potential evolution of the grid has been developed and is presented here. It uses agent-based modelling to represent the engineering infrastructure of the distribution network and has been built with flexibility and extensibility in mind. What distinguishes the method presented here from the usual ABMs is that this ABM has been developed in a compositional manner. This encompasses not only the software tool, which core is named MODAM (MODular Agent-based Model) but the model itself. Using such approach enables the model to be extended as more information becomes available or modified as the electricity system evolves, leading to an adaptable model. Two well-known modularity principles in the software engineering domain are information hiding and separation of concerns. These principles were used to develop the agent-based model on top of OSGi and Eclipse plugins which have good support for modularity. Information regarding the model entities was separated into a) assets which describe the entities’ physical characteristics, and b) agents which describe their behaviour according to their goal and previous learning experiences. This approach diverges from the traditional approach where both aspects are often conflated. It has many advantages in terms of reusability of one or the other aspect for different purposes as well as composability when building simulations. For example, the way an asset is used on a network can greatly vary while its physical characteristics are the same – this is the case for two identical battery systems which usage will vary depending on the purpose of their installation. While any battery can be described by its physical properties (e.g. capacity, lifetime, and depth of discharge), its behaviour will vary depending on who is using it and what their aim is. The model is populated using data describing both aspects (physical characteristics and behaviour) and can be updated as required depending on what simulation is to be run. For example, data can be used to describe the environment to which the agents respond to – e.g. weather for solar panels, or to describe the assets and their relation to one another – e.g. the network assets. Finally, when running a simulation, MODAM calls on its module manager that coordinates the different plugins, automates the creation of the assets and agents using factories, and schedules their execution which can be done sequentially or in parallel for faster execution. Building agent-based models in this way has proven fast when adding new complex behaviours, as well as new types of assets. Simulations have been run to understand the potential impact of changes on the network in terms of assets (e.g. installation of decentralised generators) or behaviours (e.g. response to different management aims). While this platform has been developed within the context of a project focussing on the electricity domain, the core of the software, MODAM, can be extended to other domains such as transport which is part of future work with the addition of electric vehicles.
Resumo:
Computational neuroscience aims to elucidate the mechanisms of neural information processing and population dynamics, through a methodology of incorporating biological data into complex mathematical models. Existing simulation environments model at a particular level of detail; none allow a multi-level approach to neural modelling. Moreover, most are not engineered to produce compute-efficient solutions, an important issue because sufficient processing power is a major impediment in the field. This project aims to apply modern software engineering techniques to create a flexible high performance neural modelling environment, which will allow rigorous exploration of model parameter effects, and modelling at multiple levels of abstraction.
Resumo:
Multi-agent systems (MAS) advocate an agent-based approach to software engineering based on decomposing problems in terms of decentralized, autonomous agents that can engage in flexible, high-level interactions. This chapter introduces scalable fault tolerant agent grooming environment (SAGE), a second-generation Foundation for Intelligent Physical Agents (FIPA)-compliant multi-agent system developed at NIIT-Comtec, which provides an environment for creating distributed, intelligent, and autonomous entities that are encapsulated as agents. The chapter focuses on the highlight of SAGE, which is its decentralized fault-tolerant architecture that can be used to develop applications in a number of areas such as e-health, e-government, and e-science. In addition, SAGE architecture provides tools for runtime agent management, directory facilitation, monitoring, and editing messages exchange between agents. SAGE also provides a built-in mechanism to program agent behavior and their capabilities with the help of its autonomous agent architecture, which is the other major highlight of this chapter. The authors believe that the market for agent-based applications is growing rapidly, and SAGE can play a crucial role for future intelligent applications development. © 2007, IGI Global.
Resumo:
Reuse is at the heart of major improvements in productivity and quality in Software Engineering. Both Model Driven Engineering (MDE) and Software Product Line Engineering (SPLE) are software development paradigms that promote reuse. Specifically, they promote systematic reuse and a departure from craftsmanship towards an industrialization of the software development process. MDE and SPLE have established their benefits separately. Their combination, here called Model Driven Product Line Engineering (MDPLE), gathers together the advantages of both. Nevertheless, this blending requires MDE to be recasted in SPLE terms. This has implications on both the core assets and the software development process. The challenges are twofold: (i) models become central core assets from which products are obtained and (ii) the software development process needs to cater for the changes that SPLE and MDE introduce. This dissertation proposes a solution to the first challenge following a feature oriented approach, with an emphasis on reuse and early detection of inconsistencies. The second part is dedicated to assembly processes, a clear example of the complexity MDPLE introduces in software development processes. This work advocates for a new discipline inside the general software development process, i.e., the Assembly Plan Management, which raises the abstraction level and increases reuse in such processes. Different case studies illustrate the presented ideas.
Resumo:
A modelagem orientada a agentes surge como paradigma no desenvolvimento de software, haja vista a quantidade de iniciativas e estudos que remetem à utilização de agentes de software como solução para tratar de problemas mais complexos. Apesar da popularidade de utilização de agentes, especialistas esbarram na falta de universalidade de uma metodologia para construção dos Sistemas Multiagentes (MAS), pois estas acabam pecando pelo excesso ou falta de soluções para modelar o problema. Esta dissertação propõe o uso de uma Ontologia sobre Metodologias Multiagentes, seguindo os princípios da Engenharia de Métodos Situacionais que se propõe a usar fragmentos de métodos para construção de metodologias baseados na especificidade do projeto em desenvolvimento. O objetivo do estudo é sedimentar o conhecimento na área de Metodologias Multiagentes, auxiliando o engenheiro de software a escolher a melhor metodologia ou o melhor fragmento de metodologia capaz de modelar um Sistema Multiagentes.
Resumo:
Sanders, K. and Thomas, L. 2007. Checklists for grading object-oriented CS1 programs: concepts and misconceptions. In Proceedings of the 12th Annual SIGCSE Conference on innovation and Technology in Computer Science Education (Dundee, Scotland, June 25 - 27, 2007). ITiCSE '07. ACM, New York, NY, 166-170
Resumo:
Over recent years there has been an increase in the use of generic Computational Fluid Dynamics (CFD) software packages spread across various application fields. This has created the need for the integration of expertise into CFD software. Expertise can be integrated into CFD software in the form of an Intelligent Knowledge-Based System (IKBS). The advantages of integrating intelligence into generic engineering software are discussed with a special view to software engineering considerations. The software modelling cycle of a typical engineering problem is identified and the respective expertise and user control needed for each modelling phase is shown. The requirements of an IKBS for CFD software are discussed and compared to current practice. The blackboard software architecture is presented. This is shown to be appropriate for the integration of an IKBS into an engineering software package. This is demonstrated through the presentation of the prototype CFD software package FLOWES.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Informática
Resumo:
Un objectif principal du génie logiciel est de pouvoir produire des logiciels complexes, de grande taille et fiables en un temps raisonnable. La technologie orientée objet (OO) a fourni de bons concepts et des techniques de modélisation et de programmation qui ont permis de développer des applications complexes tant dans le monde académique que dans le monde industriel. Cette expérience a cependant permis de découvrir les faiblesses du paradigme objet (par exemples, la dispersion de code et le problème de traçabilité). La programmation orientée aspect (OA) apporte une solution simple aux limitations de la programmation OO, telle que le problème des préoccupations transversales. Ces préoccupations transversales se traduisent par la dispersion du même code dans plusieurs modules du système ou l’emmêlement de plusieurs morceaux de code dans un même module. Cette nouvelle méthode de programmer permet d’implémenter chaque problématique indépendamment des autres, puis de les assembler selon des règles bien définies. La programmation OA promet donc une meilleure productivité, une meilleure réutilisation du code et une meilleure adaptation du code aux changements. Très vite, cette nouvelle façon de faire s’est vue s’étendre sur tout le processus de développement de logiciel en ayant pour but de préserver la modularité et la traçabilité, qui sont deux propriétés importantes des logiciels de bonne qualité. Cependant, la technologie OA présente de nombreux défis. Le raisonnement, la spécification, et la vérification des programmes OA présentent des difficultés d’autant plus que ces programmes évoluent dans le temps. Par conséquent, le raisonnement modulaire de ces programmes est requis sinon ils nécessiteraient d’être réexaminés au complet chaque fois qu’un composant est changé ou ajouté. Il est cependant bien connu dans la littérature que le raisonnement modulaire sur les programmes OA est difficile vu que les aspects appliqués changent souvent le comportement de leurs composantes de base [47]. Ces mêmes difficultés sont présentes au niveau des phases de spécification et de vérification du processus de développement des logiciels. Au meilleur de nos connaissances, la spécification modulaire et la vérification modulaire sont faiblement couvertes et constituent un champ de recherche très intéressant. De même, les interactions entre aspects est un sérieux problème dans la communauté des aspects. Pour faire face à ces problèmes, nous avons choisi d’utiliser la théorie des catégories et les techniques des spécifications algébriques. Pour apporter une solution aux problèmes ci-dessus cités, nous avons utilisé les travaux de Wiels [110] et d’autres contributions telles que celles décrites dans le livre [25]. Nous supposons que le système en développement est déjà décomposé en aspects et classes. La première contribution de notre thèse est l’extension des techniques des spécifications algébriques à la notion d’aspect. Deuxièmement, nous avons défini une logique, LA , qui est utilisée dans le corps des spécifications pour décrire le comportement de ces composantes. La troisième contribution consiste en la définition de l’opérateur de tissage qui correspond à la relation d’interconnexion entre les modules d’aspect et les modules de classe. La quatrième contribution concerne le développement d’un mécanisme de prévention qui permet de prévenir les interactions indésirables dans les systèmes orientés aspect.
Resumo:
Self-adaptive software provides a profound solution for adapting applications to changing contexts in dynamic and heterogeneous environments. Having emerged from Autonomic Computing, it incorporates fully autonomous decision making based on predefined structural and behavioural models. The most common approach for architectural runtime adaptation is the MAPE-K adaptation loop implementing an external adaptation manager without manual user control. However, it has turned out that adaptation behaviour lacks acceptance if it does not correspond to a user’s expectations – particularly for Ubiquitous Computing scenarios with user interaction. Adaptations can be irritating and distracting if they are not appropriate for a certain situation. In general, uncertainty during development and at run-time causes problems with users being outside the adaptation loop. In a literature study, we analyse publications about self-adaptive software research. The results show a discrepancy between the motivated application domains, the maturity of examples, and the quality of evaluations on the one hand and the provided solutions on the other hand. Only few publications analysed the impact of their work on the user, but many employ user-oriented examples for motivation and demonstration. To incorporate the user within the adaptation loop and to deal with uncertainty, our proposed solutions enable user participation for interactive selfadaptive software while at the same time maintaining the benefits of intelligent autonomous behaviour. We define three dimensions of user participation, namely temporal, behavioural, and structural user participation. This dissertation contributes solutions for user participation in the temporal and behavioural dimension. The temporal dimension addresses the moment of adaptation which is classically determined by the self-adaptive system. We provide mechanisms allowing users to influence or to define the moment of adaptation. With our solution, users can have full control over the moment of adaptation or the self-adaptive software considers the user’s situation more appropriately. The behavioural dimension addresses the actual adaptation logic and the resulting run-time behaviour. Application behaviour is established during development and does not necessarily match the run-time expectations. Our contributions are three distinct solutions which allow users to make changes to the application’s runtime behaviour: dynamic utility functions, fuzzy-based reasoning, and learning-based reasoning. The foundation of our work is a notification and feedback solution that improves intelligibility and controllability of self-adaptive applications by implementing a bi-directional communication between self-adaptive software and the user. The different mechanisms from the temporal and behavioural participation dimension require the notification and feedback solution to inform users on adaptation actions and to provide a mechanism to influence adaptations. Case studies show the feasibility of the developed solutions. Moreover, an extensive user study with 62 participants was conducted to evaluate the impact of notifications before and after adaptations. Although the study revealed that there is no preference for a particular notification design, participants clearly appreciated intelligibility and controllability over autonomous adaptations.