565 resultados para Aerodynamics, Transonic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current understanding of periodic transonic flow is reviewed briefly. The effects of boundary-layer transition, non-adiabatic wall conditions and modifications to the aerofoil surface geometry at the shock interactions on periodic transonic flow are discussed. Through the methods presented, it is proposed that the frequency of periodic motion can be predicted with reasonable accuracy, but there are limitations on the prediction of buffet boundaries associated with periodic transonic flows. Several methods have been proposed by which the periodic motion may be virtually eliminated, most relevantly by altering the position of transition fix, contouring the aerofoils surface or adding a porous surface and a cavity in the region of shock interaction. In addition, it has been shown that heat transfer can have a significant effect on buffet.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice accretions can significantly change the aerodynamic performance of wings and rotor blades. Significant performance degradation can occur when ice accreations cause regions of separated flow, to predict this change implies, at a minimum, the solution of the Reynolds-Averaged Navier-Stokes equations. This paper presents validation for two generic cases involving the flow over aerofoil sections with added synthetic ice shapes. Results were obtained for two aerofoils, namely the NACA 23012 and a generic multi-element configuration. These results are compared with force and pressure coefficient measurements obtained in the NASA LTPT wind-tunnel for the NACA 23012, and force, PIV and boundary-layer measurements obtained at DNW for the multi-clement case. The level of agreement is assessed in the context of industrial requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the use of eigenvalue stability analysis of very large dimension aeroelastic numerical models arising from the exploitation of computational fluid dynamics is reviewed. A formulation based on a block reduction of the system Jacobian proves powerful to allow various numerical algorithms to be exploited, including frequency domain solvers, reconstruction of a term describing the fluid–structure interaction from the sparse data which incurs the main computational cost, and sampling to place the expensive samples where they are most needed. The stability formulation also allows non-deterministic analysis to be carried out very efficiently through the use of an approximate Newton solver. Finally, the system eigenvectors are exploited to produce nonlinear and parameterised reduced order models for computing limit cycle responses. The performance of the methods is illustrated with results from a number of academic and large dimension aircraft test cases.