957 resultados para Aerial photography


Relevância:

60.00% 60.00%

Publicador:

Resumo:

"This publication supersedes TM30-245, NAVWEPS 10-35-610 and AFM 200-50 dated April 1954."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contract no DA-44-009 Eng. 2435, Department of the Army Project no. 8-35-11-101.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seal on cover: U.S. Army, Corps of Engineers, Army Map Service.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Contract no. DA-44-009 Eng-2986, Department of the Army Project no. 8-35-11-106."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Contract no. DA-44-009 Eng 2986, Department of the Army Project no. 8-35-11-101."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

(Gt. Brit. Air survey committee. Professional papers, no. 8 Supplement)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Errata sheet inserted in each part.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"FHTET 96-12."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cover title.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conflicting perceptions of past and present rangeland condition and limited historical data have led to debate regarding the management of vegetation in pastoral landscapes both internationally and in Australia. In light of this controversy we have sought to provide empirical evidence to determine the trajectory of vegetational change in a semi-arid rangeland for a significant portion of the 20th century using a suite of proxy measures. Ambathala Station, approximately 780 km west of Brisbane, in the semi-arid rangelands of south-western Queensland, Australia. We excavated stratified deposits of sheep manure which had accumulated beneath a shearing shed between the years 1930 and 1995. Multi-proxy data, including pollen and leaf cuticle analyses and analysis of historical aerial photography were coupled with a fine resolution radiocarbon chronology to generate a near annual history of vegetation on the property and local area. Aerial photography indicates that minor (< 5%) increases in the density of woody vegetation took place between 1951 and 1994 in two thirds of the study area not subjected to clearing. Areas that were selectively or entirely cleared prior to the 1950s (approximately 16% of the study area) had recovered to almost 60% of their original cover by the 1994 photo period. This slight thickening is only partially evident from pollen and leaf cuticle analyses of sheep faeces. Very little change in vegetation is revealed over the nearly 65 years based on the relative abundances of pollen taxonomic groups. Microhistological examination of sheep faeces provides evidence of dramatic changes in sheep diet. The majority of dietary changes are associated with climatic events of sustained above-average rainfall or persistent drought. Most notable in the dietary analysis is the absence of grass during the first two decades of the record. In contrast to prevailing perceptions and limited research into long-term vegetation change in the semi-arid areas of eastern Australia, the record of vegetation change at the Ambathala shearing shed indicates only a minor increase in woody vegetation cover and no decrease in grass cover on the property over the 65 years of pastoral activity covered by the study. However, there are marked changes in the abundance of grass cuticles in sheep faeces. The appearance and persistence of grass in sheep diets from the late 1940s can be attributed to the effects of periods of high rainfall and possibly some clearing and thinning of vegetation. Lower stock numbers may have allowed grass to persist through later drought years. The relative abundances of major groups of plant pollen have not changed significantly over the past 65 years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low Isles Reef is the most southerly located of 46 coral reef platforms unique to the inner shelf of the northern Great Barrier Reef Province, Australia, which support both sea grass and mangrove growth. Such reefs develop in areas that are influenced by river flood plumes and where interreef sediments are dominated by terrigenous mud. Low Isles Reef has long been a popular tourist destination. Informal reports of decreasing visibility, a decline in scleractinian corals, and increases in soft coral and macroalgae have sparked speculation that agricultural activities in coastal catchments are affecting the reef. Comparison of the modern surface of Low Isles Reef with historical surveys and photographs dating back to 1928 allows quantification of modern sedimentary processes, rates of change, and factors influencing reef development. Results indicate that changes on Low Isles Reef are related to remobilization of coarse sediment during storm events and gradual shoreline retreat associated with rising sea level. Retreat of shingle ramparts and elongate ridges of coral debris toward the reef interior has led to the infilling of subtidal ponds on the reef top, which supported hard coral colonies in 1928. The gradual development of a composite shingle rampart along the windward margin has promoted an increase (;150%) in the area of the reef top covered by mangroves. On the leeward margin, a decrease in hard corals since 1950 may reflect a rising contribution of organic debris from the expanding mangrove swamp. Results suggest that recent changes on Low Isles Reef can be explained in the context of natural processes. Further study is needed before the effects of agricultural activities in coastal catchments on reef health can be confirmed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.