981 resultados para Activation C–H


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Activation of endothelial cells (EC) in xenotransplantation is mostly induced through binding of antibodies (Ab) and activation of the complement system. Activated EC lose their heparan sulfate proteoglycan (HSPG) layer and exhibit a procoagulant and pro-inflammatory cell surface. We have recently shown that the semi-synthetic proteoglycan analog dextran sulfate (DXS, MW 5000) blocks activation of the complement cascade and acts as an EC-protectant both in vitro and in vivo. However, DXS is a strong anticoagulant and systemic use of this substance in a clinical setting might therefore be compromised. It was the aim of this study to investigate a novel, fully synthetic EC-protectant with reduced inhibition of the coagulation system. METHOD: By screening with standard complement (CH50) and coagulation assays (activated partial thromboplastin time, aPTT), a conjugate of tyrosine sulfate to a polymer-backbone (sTyr-PAA) was identified as a candidate EC-protectant. The pathway-specificity of complement inhibition by sTyr-PAA was tested in hemolytic assays. To further characterize the substance, the effects of sTyr-PAA and DXS on complement deposition on pig cells were compared by flow cytometry and cytotoxicity assays. Using fluorescein-labeled sTyr-PAA (sTyr-PAA-Fluo), the binding of sTyr-PAA to cell surfaces was also investigated. RESULTS: Of all tested compounds, sTyr-PAA was the most effective substance in inhibiting all three pathways of complement activation. Its capacity to inhibit the coagulation cascade was significantly reduced as compared with DXS. sTyr-PAA also dose-dependently inhibited deposition of human complement on pig cells and this inhibition correlated with the binding of sTyr-PAA to the cells. Moreover, we were able to demonstrate that sTyr-PAA binds preferentially and dose-dependently to damaged EC. CONCLUSIONS: We could show that sTyr-PAA acts as an EC-protectant by binding to the cells and protecting them from complement-mediated damage. It has less effect on the coagulation system than DXS and may therefore have potential for in vivo application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG. Different IVIgs were therefore tested for specificity of complement inhibition and effect on anti-bacterial activity of human serum. IVIgM-I (Pentaglobin), 12% IgM), IVIgM-II (IgM-fraction of IVIgM-I, 60% IgM), and three different IVIgG (all >95% IgG) were used. The known complement inhibitor dextran sulfate was used as control. Hemolytic assays were performed to analyze pathway-specificity of complement inhibition. Effects of IVIg on complement deposition on pig cells and Escherichia coli were assessed by flow cytometry and cytotoxicity as well as bactericidal assays. Complement inhibition by IVIgM was specific for the classical pathway, with IC50 values of 0.8 mg/ml for IVIgM-II and 1.7 mg/ml for IVIgM-I in the CH50 assay. Only minimal inhibition of the lectin pathway was seen with IVIgM-II (IC50 15.5 mg/ml); no alternative pathway inhibition was observed. IVIgG did not inhibit complement in any hemolytic assay. Classical pathway complement inhibition by IVIgM was confirmed in an in vitro xenotransplantation model with PK15 cells. In contrast, IVIgM did not inhibit (mainly alternative pathway mediated) killing of E. coli by human serum. In conclusion, IgM-enriched IVIg is a specific inhibitor of the classical complement pathway, leaving the alternative pathway intact, which is an important natural anti-bacterial defense, especially for immunosuppressed patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leukocyte transmigration is mediated by endothelial cell (EC) junctional molecules, but the associated mechanisms remain unclear. Here we investigate how intercellular adhesion molecule-2 (ICAM-2), junctional adhesion molecule-A (JAM-A), and platelet endothelial cell adhesion molecule (PECAM-1) mediate neutrophil transmigration in a stimulus-dependent manner (eg, as induced by interleukin-1beta [IL-1beta] but not tumor necrosis factor-alpha [TNF-alpha]), and demonstrate their ability to act in sequence. Using a cell-transfer technique, transmigration responses of wild-type and TNF-alpha p55/p75 receptor-deficient leukocytes (TNFR(-/-)) through mouse cremasteric venules were quantified by fluorescence intravital microscopy. Whereas wild-type leukocytes showed a normal transmigration response to TNF-alpha in ICAM-2(-/-), JAM-A(-/-), and PECAM-1(-/-) recipient mice, TNFR(-/-) leukocytes exhibited a reduced transmigration response. Hence, when the ability of TNF-alpha to directly stimulate neutrophils is blocked, TNF-alpha-induced neutrophil transmigration is rendered dependent on ICAM-2, JAM-A, and PECAM-1, suggesting that the stimulus-dependent role of these molecules is governed by the target cell being activated. Furthermore, analysis of the site of arrest of neutrophils in inflamed tissues from ICAM-2(-/-), JAM-A(-/-), and PECAM-1(-/-) mice demonstrated that these molecules act sequentially to mediate transmigration. Collectively, the findings provide novel insights into the mechanisms of action of key molecules implicated in leukocyte transmigration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: We sought to investigate the activity of bilateral parietal and premotor areas during a Go/No Go paradigm involving praxis movements of the dominant hand. METHODS: A sentence was presented which instructed subjects on what movement to make (S1; for example, "Show me how to use a hammer."). After an 8-s delay, "Go" or "No Go" (S2) was presented. If Go, they were instructed to make the movement described in the S1 instruction sentence as quickly as possible, and continuously until the "Rest" cue was presented 3 s later. If No Go, subjects were to simply relax until the next instruction sentence. Event-related potentials (ERP) and event-related desynchronization (ERD) in the beta band (18-22 Hz) were evaluated for three time bins: after S1, after S2, and from -2.5 to -1.5 s before the S2 period. RESULTS: Bilateral premotor ERP was greater than bilateral parietal ERP after the S2 Go compared with the No Go. Additionally, left premotor ERP was greater than that from the right premotor area. There was predominant left parietal ERD immediately after S1 for both Go and No Go, which was sustained for the duration of the interval between S1 and S2. For both S2 stimuli, predominant left parietal ERD was again seen when compared to that from the left premotor or right parietal area. However, the left parietal ERD was greater for Go than No Go. CONCLUSION: The results suggest a dominant role in the left parietal cortex for planning, executing, and suppressing praxis movements. The ERP and ERD show different patterns of activation and may reflect distinct neural movement-related activities. SIGNIFICANCE: The data can guide further studies to determine the neurophysiological changes occurring in apraxia patients and help explain the unique error profiles seen in patients with left parietal damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Acute psychosocial stress accelerates blood coagulation and elicits hemoconcentration which mechanisms are implicated in acute coronary thrombotic events. We investigated the extent to which the change in prothrombotic measures with acute stress reflects hemoconcentration and genuine activation of coagulation. MATERIAL AND METHODS: Twenty-one middle-aged healthy men underwent three sessions of a combined speech and mental arithmetic task with one-week intervals. Coagulation and plasma volume were assessed at baseline, immediately post-stress, and 45 min post-stress at sessions one and three. Measures of both visits were aggregated to enhance robustness of individual biological stress responses. Changes in eight coagulation measures with and without adjustment for simultaneous plasma volume shift were compared. RESULTS: From baseline to immediately post-stress, unadjusted levels of fibrinogen (p=0.028), clotting factor VII activity (FVII:C) (p=0.001), FVIII:C (p<0.001), FXII:C (p<0.001), and von Willebrand factor (VWF) (p=0.008) all increased. Taking into account hemoconcentration, fibrinogen (p=0.020) and FVII:C levels (p=0.001) decreased, activated partial prothrombin time (APPT) shortened (p<0.001) and prothrombin time (PT) was prolonged (p<0.001). Between baseline and 45 min post-stress, unadjusted (p=0.050) and adjusted (p=0.001) FVIII:C levels increased, adjusted APTT was prolonged (p=0.017), and adjusted PT was shortened (p=0.033). D-dimer levels did not significantly change over time. CONCLUSIONS: Adjustment for stress-hemoconcentration altered the course of unadjusted levels of several prothrombotic factors. After adjustment for hemoconcentration, APPT was shortened immediately post-stress, whereas 45 min post-stress, FVIII:C was increased and PT was shortened. Procoagulant changes to acute stress may reflect both hemoconcentration and genuine activation of coagulation molecules and pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the magnitude of 20-min moderate exercise-induced platelet activation in 50 volunteers with normal (n=31) or elevated blood pressure (EBP; n=19). Blood was drawn before, immediately after, and 25 min after exercise. Antibody-staining for platelet activation markers, P-selectin, and fibrinogen receptors was done with and without adenosine diphosphate (ADP) stimulation in whole blood for flow cytometric analyses. Exercise led to increases in percent aggregated platelets and percent platelets expressing P-selectin or PAC-1 binding (ps< or =.001). This increase in percent platelets expressing P-selectin continued even after a 25-min rest only in the EBP group (p< or =.01) accompanied by an increase in percent of aggregated platelets (p< or =.05). Although ADP stimulation led to increased platelet activation at rest, it was attenuated following exercise, even among EBP individuals. A moderate exercise challenge induced prolonged platelet activation in individuals with EBP but attenuation in activation to further stimulation by an agonist. Findings suggest that a recovery period after physical stress appears critical in individuals with high BP regarding platelet activation and aggregation, which can lead to an acute coronary syndrome in vulnerable individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: There is increasing evidence suggesting that development of progressive canine cranial cruciate ligament (CCL) rupture involves a gradual degeneration of the CCL itself, initiated by a combination of factors, ranging from mechanical to biochemical. To date, knowledge is lacking to what extent cruciate disease results from abnormal biomechanics on a normal ligament or contrary how far preliminary alterations of the ligament due to biochemical factors provoke abnormal biomechanics. This study is focused on nitric oxide (NO), one of the potential biochemical factors. The NO-donor sodium nitroprusside (SNP) has been used to study NO-dependent cell death in canine cranial and caudal cruciate ligament cells and to characterize signaling mechanisms during NO-stimulation. RESULTS: Sodium nitroprusside increased apoptotic cell death dose- and time-dependently in cruciate ligamentocytes. Cells from the CCL were more susceptible to apoptosis than CaCL cells. Caspase-3 processing in response to SNP was not detected. Testing major upstream and signal transducing pathways, NO-induced cruciate ligament cell death seemed to be mediated on different levels. Specific inhibition of tyrosine kinase significantly decreased SNP-induced cell death. Mitogen activated protein kinase ERK1 and 2 are activated upon NO and provide anti-apoptotic signals whereas p38 kinase and protein kinase C are not involved. Moreover, data showed that the inhibition reactive oxygen species (ROS) significantly reduced the level of cruciate ligament cell death. CONCLUSIONS: Our data support the hypothesis that canine cruciate ligamentocytes, independently from their origin (CCL or CaCL) follow crucial signaling pathways involved in NO-induced cell death. However, the difference on susceptibility upon NO-mediated apoptosis seems to be dependent on other pathways than on these tested in the present study. In both, CCL and CaCL, the activation of the tyrosine kinase and the generation of ROS reveal important signaling pathways. In perspective, new efforts to prevent the development and progression of cruciate disease may include strategies aimed at reducing ROS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enamel matrix derivative (EMD), an extract of fetal porcine enamel, and TGF-β can both suppress adipogenic differentiation. However, there have been no studies that functionally link the role of EMD and TGF-β in vitro. Herein, we examined whether TGF-β signaling contributes to EMD-induced suppression of adipogenic differentiation. Adipogenesis was studied with 3T3-L1 preadipocytes in the presence of SB431542, an inhibitor of TGF-βRI kinase activity. SB431542 reversed the inhibitory effect of EMD on adipogenic differentiation, based on Oil Red O staining and mRNA expression of lipid regulated genes. SB431542 also reduced EMD-stimulated expression of connective tissue growth factor (CTGF), an autocrine inhibitor of adipogenic differentiation. Moreover, short interfering (si)RNAs for CTGF partially reversed the EMD-induced suppression of lipid regulated genes. We conclude that the TGF-βRI - CTGF axis is involved in the anti-adipogenic effects of EMD in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Natural IgM containing anti-Gal antibodies initiates classic pathway complement activation in xenotransplantation. However, in ischemia-reperfusion injury, IgM also induces lectin pathway activation. The present study was therefore focused on lectin pathway as well as interaction of IgM and mannose-binding lectin (MBL) in pig-to-human xenotransplantation models. METHODS Activation of the different complement pathways was assessed by cell enzyme-linked immunosorbent assay using human serum on wild-type (WT) and α-galactosyl transferase knockout (GalTKO)/hCD46-transgenic porcine aortic endothelial cells (PAEC). Colocalization of MBL/MASP2 with IgM, C3b/c, C4b/c, and C6 was investigated by immunofluorescence in vitro on PAEC and ex vivo in pig leg xenoperfusion with human blood. Influence of IgM on MBL binding to PAEC was tested using IgM depleted/repleted and anti-Gal immunoabsorbed serum. RESULTS Activation of all the three complement pathways was observed in vitro as indicated by IgM, C1q, MBL, and factor Bb deposition on WT PAEC. MBL deposition colocalized with MASP2 (Manders' coefficient [3D] r=0.93), C3b/c (r=0.84), C4b/c (r=0.86), and C6 (r=0.80). IgM colocalized with MBL (r=0.87) and MASP2 (r=0.83). Human IgM led to dose-dependently increased deposition of MBL, C3b/c, and C6 on WT PAEC. Colocalization of MBL with IgM (Pearson's coefficient [2D] rp=0.88), C3b/c (rp=0.82), C4b/c (rp=0.63), and C6 (rp=0.81) was also seen in ex vivo xenoperfusion. Significantly reduced MBL deposition and complement activation was observed on GalTKO/hCD46-PAEC. CONCLUSION Colocalization of MBL/MASP2 with IgM and complement suggests that the lectin pathway is activated by human anti-Gal IgM and may play a pathophysiologic role in pig-to-human xenotransplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Atrial tachycardias (AT) during or after ablation of atrial fibrillation frequently pose a diagnostic challenge. We hypothesized that both the patterns and the timing of coronary sinus (CS) activation could facilitate AT mapping. METHODS AND RESULTS A total of 140 consecutive postpersistent atrial fibrillation ablation patients with sustained AT were investigated by conventional mapping. CS activation pattern was defined as chevron or reverse chevron when the activations recorded on both the proximal and the distal CS dipoles were latest or earliest, respectively. The local activation of mid-CS was timed with reference to Ppeak-Ppeak (P-P) interval in lead V1. A ratio, mid-CS activation time to AT cycle length, was computed. Of 223 diagnosed ATs, 124 were macroreentrant (56%) and 99 were centrifugal (44%). When CS activation was chevron/reverse chevron (n=44; 20%), macroreentries were mostly roof dependent. With reference to P-P interval, mid-CS activation timing showed specific consistency for peritricuspid and perimitral AT. Proximal to distal CS activation pattern and mid-CS activation at 50% to 70% of the P-P interval (n=30; 13%) diagnosed peritricuspid AT with 81% sensitivity and 89% specificity. Distal to proximal CS activation and mid-CS activation at 10% to 40% of the P-P interval (n=44; 20%) diagnosed perimitral AT with 88% sensitivity and 75% specificity. CONCLUSIONS The analysis of the patterns and timing of CS activation provides a rapid stratification of most likely macroreentrant ATs and points toward the likely origin of centrifugal ATs. It can be included in a stepwise diagnostic approach to rapidly select the most critical mapping maneuvers.