969 resultados para Acoustic surface wave devices.
Resumo:
A theory is provided for a common experimental set up that is used to measure surface properties in surfactant monolayers. The set up consists of a surfactant monolayer (over a shallow liquid layer) that is compressed/expanded in a periodic fashion by moving in counter-phase two parallel, slightly immersed solid barriers, which vary the free surface area and thus the surfactant concentration. The simplest theory ignores the fluid dynamics in the bulk fluid, assuming spatially uniform surfactant concentration, which requires quite small forcing frequencies and provides reversible dynamics in the compression/expansion cycles. In this paper, we present a long-wave theory for not so slow oscillations that assumes local equilibrium but takes the fluid dynamics into account. This simple theory uncovers the physical mechanisms involved in the surfactant behavior and allows for extracting more information from each experimental run. The conclusion is that the fluid dynamics cannot be ignored, and that some irreversible dynamics could well have a fluid dynamic origin
Resumo:
Although everybody should know thatmeasurements are never performed directly onmaterials but on devices, this is not generally true. Devices are physical systems able to exchange energy and thus subject to the laws of physics, which determine the information they provide. Hence, we should not overlook device effects in measurements as we do by assuming naively that photoluminescence (PL) is bulk emission free fromsurface effects. By replacing this unjustified assumption with a propermodel forGaN surface devices, their yellow band PL becomes surface-assisted luminescence that allows for the prediction of the weak electroluminescence recently observed in n-GaN devices when holes are brought to their surfaces.
Resumo:
In this paper we review simulation and experimental studies of thermal capillary wave fluctuations as an ideal means for probing the underlying disjoining pressure and surface tensions, and more generally, fine details of the Interfacial Hamiltonian Model. We discuss recent simulation results that reveal a film-height-dependent surface tension not accounted for in the classical Interfacial Hamiltonian Model. We show how this observation may be explained bottom-up from sound principles of statistical thermodynamics and discuss some of its implications
Resumo:
El diagnóstico y detección temprana de enfermedades son clave para reducir la tasa de mortalidad, las hospitalizaciones de larga duración y el desaprovechamiento de recursos. En los últimos años se ha impulsado, mediante un aumento de la financiación, el desarrollo de nuevos biosensores de bajo coste capaces de detectar y cuantificar cantidades muy pequeñas de especies biológicas de una forma barata y sencilla. El trabajo presentado en esta Tesis Doctoral describe la investigación llevada a cabo en el desarrollo de sensores gravimétricos basados en resonadores de ondas acústicas de volumen (BAW) de estructura maciza (SMR). Los dispositivos emplean películas delgadas de A1N como material piezoeléctrico y operan en modo de cizalladura, para así poder detectar especies biológicas en medio líquido. El principio de funcionamiento de estos sensores se basa en la variación que experimenta la frecuencia de resonancia al quedar una pequeña masa adherida a su superficie. Necesitan operar en modo de cizalladura para que su resonancia no se atenúe al trabajar en medio líquido, así como ofrecer una superficie capaz de ser funcionalizada específicamente para la especie biológica a detectar. El reto planteado en esta tesis requiere un acercamiento pluridisciplinar al problema que incluye el estudio de los diferentes materiales que constituyen la estructura multicapa que forma un SMR, el diseño y fabricación del dispositivo y del sistema de fluídica, la funcionalización bioquímica de la superficie del sensor, la demostración de la capacidad de detección de especies biológicas y finalmente el diseño y fabricación de la electrónica asociada para la detección de la señal eléctrica. Todas esas tareas han sido abordadas en las distintas etapas del desarrollo de esta tesis y las contribuciones más relevantes se describen en el documento. En el campo de desarrollo de los materiales, se propone un proceso en dos etapas para la pulverización reactiva de capas de A1N que contengan microcristales inclinados capaces de excitar el modo de cizalladura. Se caracteriza la velocidad acústica del modo de cizalladura en todos los materiales que componen la estructura, con el fin de poder obtener un diseño más adecuado del reflector acústico. Se propone un nuevo tipo de material aislante de alta impedancia acústica consistente en capas de W03 pulverizadas que presenta ciertas ventajas tecnológicas frente a las capas convencionales de Ta205. Respecto del diseño del transductor, se estudia la influencia que tienen los con tactos eléctricos extendidos del resonador necesarios para poder adaptar el sistema de fluídica a la estructura. Los resultados indican que es necesario trabajar sobre sustratos aislantes (tanto el soporte como el espejo acústico) para evitar efectos parásitos asociados al uso de capas metálicas bajo los electrodos del resonador que dañan su resonancia. Se analiza la influencia de las diferentes capas del dispositivo en el coeficiente de temperatura de la frecuencia (TCF) del resonador llegando a la conclusión de que las dos últimas capas del reflector acústico afectan significativamente al TCF del SMR, pudiendo reducirse ajusfando adecuadamente sus espesores. De acuerdo con los resultados de estos estudios, se han diseñado finalmente resonadores SMR operando a f .3 GHz en modo de cizalladura, con un área activa de 65000 /xm2, contactos eléctricos que se extienden f .7 mm y factores de calidad en líquido de f 50. Las extensiones eléctricas permiten adaptar el resonador a un sistema de fluídica de metacrilato. Para la detección de especies biológicas se realiza un montaje experimental que permite circular 800 ¡A por la superficie del sensor a través de un circuito cerrado que trabaja a volumen constante. La circulación de soluciones iónicas sobre el sensor descubierto pone de manifiesto que las altas frecuencias de operación previenen los cortocircuitos y por tanto el aislamiento de los electrodos es prescindible. Se desarrolla un protocolo ad-hoc de funcionalización basado en el proceso estándar APTESGlutaraldehído. Se proponen dos alternativas novedosas para la funcionalización de las áreas activas del sensor basadas en el uso de capas de oxidación de Ir02 y su activación a través de un plasma de oxígeno que no daña al dispositivo. Ambos procesos contribuyen a simplificar notablemente la funcionalización de los sensores gravimétricos. Se utilizan anticuerpos y aptámeros como receptores para detectar trombina, anticuerpo monoclonal IgG de ratón y bacteria sonicadas. Una calibración preliminar del sensor con depósitos de capas finas de Si02 de densidad y espesor conocidos permite obtener una sensibilidad de 1800 kHz/pg-cm2 y un límite de detección of 4.2 pg. Finalmente se propone el prototipo de un circuito electrónico de excitación y lectura de bajo coste diseñado empleando teoría de circuitos de microondas. Aunque su diseño y funcionamiento admite mejoras, constituye la última etapa de un sistema completo de bajo coste para el diagnóstico de especies biológicas basado en resonadores SMR de A1N. ABSTRACT Early diagnosis and detection of diseases are essential for reducing mortality rate and preventing long-term hospitalization and waste of resources. These requirements have boosted the efforts and funding on the research of accurate and reliable means for detection and quantification of biological species, also known as biosensors. The work presented in this thesis describes the development and fabrication of gravimetric biosensors based on piezoelectric AlN bulk acoustic wave (BAW) solidly mounted resonators (SMRs) for detection of biological species in liquid media. These type of devices base their sensing principles in the variation that their resonant frequency suffers when a mass is attached to their surface. They need to operate in the shear mode to maintain a strong resonance in liquid and an adequate functionalisation of their sensing area to guarantee that only the targeted molecules cause the shift. The challenges that need to be overcome to achieve piezoelectric BAW resonators for high sensitivity detection in fluids require a multidisciplinary approach, that include the study of the materials involved, the design of the device and the fluidic system, the biochemical functionalisation of the active area, the experimental proof-of-concept with different target species and the design of an electronic readout circuit. All this tasks have been tackled at different stages of the thesis and the relevant contributions are described in the document. In the field of materials, a two-stage sputtering deposition process has been developed to obtain good-quality AlN films with uniformly tilted grains required to excite the shear mode. The shear acoustic velocities of the materials composing the acoustic reflector have been accurately studied to ensure an optimum design of the reflector stack. WO3 sputtered films have been proposed as high acoustic impedance material for insulating acoustic reflectors. They display several technological advantages for the processing of the resonators. Regarding the design, a study of the influence of the electrical extensions necessary to fit a fluidic system on the performance of the devices has been performed. The results indicate that high resistivity substrates and insulating reflectors are necessary to avoid the hindering of the resonance due to the parasitic effects induced by the extensions. The influence of the different layers of the stack on the resultant TCF of the SMRs has also been investigated. The two layers of the reflector closer to the piezoelectric layer have a significant influence on the TCF, which can be reduced by modifying their thicknesses accordingly. The data provided by these studies has led to the final design of the devices, which operate at 1.3 GHz in the shear mode and display an active area of 65000 /xm2 and electrical extensions of 1.7 mm while keeping a Qahear=150 in liquid. The extensions enable to fit a custom-made fluidic system made of methacrylate. To perform the biosensing experiments, an experimental setup with a liquid closed circuit operating at constant flow has been developed. Buffers of ionic characteristics have been tested on non-isolated devices, revealing that high operation frequencies prevent the risk of short circuit. An ad-hoc functionalisation protocol based on the standard APTES - Glutaraldehyde process has been developed. It includes two new processes that simplify the fabrication of the transducers: the use of IrO2 as oxidation layer and its functionalisation through an O2 plasma treatment that does not damage the resonators. Both antibodies and aptamers are used as receptors. In liquid sensing proof-of-concept experiments with thrombin, IgG mouse monoclonal antibody and sonicated bacteria have been displayed. A preliminary calibration of the devices using SiO2 layers reveals a sensitivity of 1800 kHz/pg-cm2 and a limit of detection of 4.2 pg. Finally, a first prototype of a low-cost electronic readout circuit designed using a standard microwave approach has been developed. Although its performance can be significantly improved, it is an effective first approach to the final stage of a portable low-cost diagnostic system based on shear mode AlN SMRs.
Resumo:
Mode of access: Internet.
Resumo:
"Interim report for period January 1976-February 1976."
Resumo:
The ability to control the surface properties and subsequent colloidal stability of dispersed particles has widespread applicability in many fields. Sub-micrometer fluorescent silica particles (reporters) can be used to actively encode the combinatorial synthesis of peptide libraries through interparticle association. To achieve these associations, the surface chemistry of the small fluorescent silica reporters is tailored to encourage robust adhesion to large silica microparticles onto which the peptides are synthesized. The interparticle association must withstand a harsh solvent environment multiple synthetic and washing procedures, and biological screening buffers. The encoded support beads were exposed to different solvents used for peptide synthesis, and different solutions used for biological screening including phosphate buffered saline (PBS), 2-[N-morpholino]ethane sulfonic acid (VIES) and a mixture of MES and N-(3-dimethyl-aminopropyl)-N'-ethylcarbodiimide (EDC). The number of reporters remaining adhered to the support bead was quantified after each step. The nature of the associations were explored and tested to optimize the efficiency of these phenomena. Results presented illustrate the influence of the surface functionality and polyelectrolyte modification of the reporters. These parameters were investigated through zeta potential and X-ray photoelectron spectroscopy.
Resumo:
Miniature slow light Surface Nanoscale Axial Photonics (SNAP) devices are reviewed. The fabrication precision of these devices is two orders of magnitude higher and the transmission losses are two orders of magnitude smaller than for any of the previously reported technologies for fabrication of miniature photonic circuits. In the first part of the report, a SNAP bottle resonator with a few nm high radius variation is demonstrated as the record small, slow light, and low loss 2.6 ns dispersionless delay line of 100 ps pulses. Next, a record small SNAP bottle resonator exhibiting the 20 ns/nm dispersion compensation of 100 ps pulses is demonstrated. In the second part of the report, the prospects of the SNAP technology in applications to telecommunications, optical signal processing, quantum computing, and microfluidics are discussed. © 2014 IEEE.
On thermodynamics in the primary power conversion of oscillating water column wave energy converters
Resumo:
The paper presents an investigation to the thermodynamics of the air flow in the air chamber for the oscillating water column wave energy converters, in which the oscillating water surface in the water column pressurizes or de-pressurises the air in the chamber. To study the thermodynamics and the compressibility of the air in the chamber, a method is developed in this research: the power take-off is replaced with an accepted semi-empirical relationship between the air flow rate and the oscillating water column chamber pressure, and the thermodynamic process is simplified as an isentropic process. This facilitates the use of a direct expression for the work done on the power take-off by the flowing air and the generation of a single differential equation that defines the thermodynamic process occurring inside the air chamber. Solving the differential equation, the chamber pressure can be obtained if the interior water surface motion is known or the chamber volume (thus the interior water surface motion) if the chamber pressure is known. As a result, the effects of the air compressibility can be studied. Examples given in the paper have shown the compressibility, and its effects on the power losses for large oscillating water column devices.
Resumo:
This paper presents a study on the numerical simulation of the primary wave energy conversion in the oscillating water column (OWC) wave energy converters (WECs). The new proposed numerical approach consists of three major components: potential flow analysis for the conventional hydrodynamic parameters, such as added mass, damping coefficients, restoring force coefficients and wave excitations; the thermodynamic analysis of the air in the air chamber, which is under the assumptions of the given power take-off characteristics and an isentropic process of air flow. In the formulation, the air compressibility and its effects have been included; and a time-domain analysis by combining the linear potential flow and the thermodynamics of the air flow in the chamber, in which the hydrodynamics and thermodynamics/aerodynamics have been coupled together by the force generated by the pressurised and de-pressurised air in the air chamber, which in turn has effects on the motions of the structure and the internal water surface. As an example, the new developed approach has been applied to a fixed OWC device. The comparisons of the measured data and the simulation results show the new method is very capable of predicting the performance of the OWC devices.
A New Method for Modeling Free Surface Flows and Fluid-structure Interaction with Ocean Applications
Resumo:
The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.
We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.
Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.
Resumo:
This paper presents an investigation on air compressibility in the air chamber and its effects on the power conversion of oscillating water column (OWC) devices. As it is well known that for practical OWC plants, their air chambers may be large enough for accommodating significant air compressibility, the “spring effect,” an effect that is frequently and simply regarded to store and release energy during the reciprocating process of a wave cycle. Its insight effects on the device’s performance and power conversion, however, have not been studied in detail. This research will investigate the phenomena with a special focus on the effects of air compressibility on wave energy conversion. Air compressibility itself is a complicated nonlinear process in nature, but it can be linearised for numerical simulations under certain assumptions for frequency domain analysis. In this research work, air compressibility in the OWC devices is first linearised and further coupled with the hydrodynamics of the OWC. It is able to show mathematically that in frequency-domain, air compressibility can increase the spring coefficients of both the water body motion and the device motion (if it is a floating device), and enhance the coupling effects between the water body and the structure. Corresponding to these changes, the OWC performance, the capture power, and the optimised Power Take-off (PTO) damping coefficient in the wave energy conversion can be all modified due to air compressibility. To validate the frequency-domain results and understand the problems better, the more accurate time-domain simulations with fewer assumptions have been used for comparison. It is shown that air compressibility may significantly change the dynamic responses and the capacity of converting wave energy of the OWC devices if the air chamber is very large.
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1303/thumbnail.jpg
Resumo:
Utilization of graphene covered waveguide inserts to form tunable waveguide resonators is theoretically explained and rigorously investigated by means of full-wave numerical electromagnetic simulations. Instead of using graphene-based switching elements, the concept we propose incorporates graphene sheets as parts of a resonator. Electrostatic tuning of the graphene surface conductivity leads to changes in the electromagnetic field boundary conditions at the resonator edges and surfaces, thus producing an effect similar to varying the electrical length of a resonator. The presented outline of the theoretical background serves to give phenomenological insight into the resonator behavior, but it can also be used to develop customized software tools for design and optimization of graphene-based resonators and filters. Due to the linear dependence of the imaginary part of the graphene surface impedance on frequency, the proposed concept was expected to become effective for frequencies above 100 GHz, which is confirmed by the numerical simulations. A frequency range from 100 GHz up to 1100 GHz, where the rectangular waveguides are used, is considered. Simple, all-graphene-based resonators are analyzed first, to assess the achievable tunability and to check the performance throughout the considered frequency range. Graphene–metal combined waveguide resonators are proposed in order to preserve the excellent quality factors typical for the type of waveguide discontinuities used. Dependence of resonator properties on key design parameters is studied in detail. Dependence of resonator properties throughout the frequency range of interest is studied using eight different waveguide sections appropriate for different frequency intervals. Proposed resonators are aimed at applications in the submillimeter-wave spectral region, serving as the compact tunable components for the design of bandpass filters and other devices.