604 resultados para Acetylcholine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha 1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. The GlyR comprises a pentameric complex that forms a chloride-selective transmembrane channel, which is predominantly expressed in the spinal cord and brain stem. We review the pharmacological and physiological properties of the GlyR and relate this information to more recent insights that have been obtained through the cloning and recombinant expression of the GlyR subunits. We also discuss insights into our understanding of GlyR structure and function that have been obtained by the genetic characterisation of various heritable disorders of glycinergic neurotransmission. (C) 1997 Elsevier Science Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Intracellular recordings were made from neurones in the rat otic ganglion in vitro in order to investigate their morphological, physiological and synaptic properties. We took advantage of the simple structure of these cells to test for a possible role of calcium influx via nicotinic acetylcholine receptors during synaptic transmission. 2. Cells filled with biocytin comprised a homogeneous population with ovoid somata and sparse dendritic trees. Neurones had resting membrane potentials of -53 +/- 0.7 mV (n = 69), input resistances of 112 + 7 M Omega, and membrane time constants of 14 +/- 0.9 ms (n = 60). Upon depolarization, all cells fired overshooting action potentials which mere followed by an apamin-sensitive after-hyperpolarization (AHP). In response to a prolonged current injection, all neurones fired tonically. 3. The repolarization phase of action potentials had a calcium component which was mediated by N-type calcium channels. Application of omega-conotoxin abolished both the repolarizing hump and the after-hgrperpolarization suggesting that calcium influx via N-type channels activates SK-type calcium-activated potassium channels which underlie the AHP. 4. The majority (70%) of neurones received innervation from a single preganglionic fibre which generated a suprathreshold excitatory postsynaptic potential mediated by nicotinic acetylcholine receptors. The other 30% of neurones also had one or more subthreshold nicotinic inputs. 5. Calcium influx via synaptic nicotinic receptors contributed to the AHP current, indicating that this calcium has access to the calcium-activated potassium channels and therefore plays a role in regulating cell excitability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We aimed to investigate the vascular effects of hyperhomocysteinemia (HHcy) on carotid arteries from young and adult rats. With this purpose young and adult rats received a solution of DL-homocysteine-thiolactone (1 g/kg body weight/day) in the drinking water for 7, 14 and 28 days. Increase on plasma homocysteine occurred in young and adult rats treated with DL-homocysteine-thiolactone in all periods. Vascular reactivity experiments using standard muscle bath procedures showed that HHcy enhanced the contractile response of endothelium-intact, carotid rings to phenylephrine in both young and adult rats. However, in young rats, the increased phenylephrine-induced contraction was observed after hyperhomocysteinemia for 14 and 28 days, whereas in adult rats this response was already apparent after 7 day treatment. HHcy impaired acetylcholine-induced relaxation in arteries from adult but not young rats. The contraction induced by phenylephrine in carotid arteries in the presence of Y-27632 was reversed to control values in arteries from young but not adult rats with hyperhomocysteinemia. HHcy did not alter the contraction induced by CaCl(2) in carotid arteries from young rats, but enhanced CaCl(2)-induced contraction in the arteries from adult rats. HHcy increased the basal levels of superoxide anion in arteries from both groups. Finally, HHcy decreased the basal levels of nitrite in arteries from adult but not young rats. The major new finding of the present work is that arteries from young rats are more resistant to vascular changes evoked by HHcy than arteries from adult rats. Also, we verified that the enhanced vascular response to phenylephrine observed in carotid arteries of DL-homocysteine thiolactone-treated rats is mediated by different mechanisms in young and adult rats. (C) 2010 Published by Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conotoxins are small, cysteine-rich peptides isolated from the venom of Conus spp. of predatory marine snails, which selectively target specific receptors and ion channels critical to the functioning of the neuromuscular system. alpha-Conotoxins PnIA and PnIB are both 16-residue peptides (differing in sequence at only two positions) isolated from the molluscivorous snail Conus pennaceus. In contrast to the muscle-selective alpha-conotoxin GI from Conus geographus, PnIA and PnIB block the neuronal nicotinic acetylcholine receptor (nAChR). Here, we describe the crystal structure of PnIB, solved at a resolution of 1.1 Angstrom and phased using the Shake-and-Bake direct methods program. PnIB crystals are orthorhombic and belong to the space group P2(1)2(1)2(1) with the following unit cell dimensions: a = 14.6 Angstrom, b = 26.1 Angstrom, and c = 29.2 Angstrom. The final refined structure of alpha-conotoxin PnIB includes all 16 residues plus 23 solvent molecules and has an overall R-factor of 14.7% (R-free of 15.9%). The crystal structures of the alpha-conotoxins PnIB and PnIA are solved from different crystal forms, with different solvent contents. Comparison of the structures reveals them to be very similar, showing that the unique backbone and disulfide architecture is not strongly influenced by crystal lattice constraints or solvent interactions. This finding supports the notion that this structural scaffold is a rigid support for the presentation of important functional groups. The structures of PnIB and PnIA differ in their shape and surface charge distribution from that of GI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Sequence variants located at 15q25 have been associated with lung cancer and propensity to smoke. We recently reported an association between rs16969968 and risk of upper aerodigestive tract (UADT) cancers (oral cavity, oropharynx, hypopharynx, larynx, and esophagus) in women (OR = 1.24, P = 0.003) with little effect in men (OR = 1.04, P = 0.35). Methods: In a coordinated genotyping study within the International Head and Neck Cancer Epidemiology (INHANCE) consortium, we have sought to replicate these findings in an additional 4,604 cases and 6,239 controls from 10 independent UADT cancer case-control studies. Results: rs16969968 was again associated with UADT cancers in women (OR = 1.21, 95% CI = 1.08-1.36, P = 0.001) and a similar lack of observed effect in men [OR = 1.02, 95% CI = 0.95-1.09, P = 0.66; P-heterogeneity (P(het)) = 0.01]. In a pooled analysis of the original and current studies, totaling 8,572 UADT cancer cases and 11,558 controls, the association was observed among females (OR = 1.22, 95% CI = 1.12-1.34, P = 7 x 10(-6)) but not males (OR = 1.02, 95% CI = 0.97-1.08, P = 0.35; P(het) = 6 x 10(-4)). There was little evidence for a sex difference in the association between this variant and cigarettes smoked per day, with male and female rs16969968 variant carriers smoking approximately the same amount more in the 11,991 ever smokers in the pooled analysis of the 14 studies (P(het) = 0.86). Conclusions: This study has confirmed a sex difference in the association between the 15q25 variant rs16969968 and UADT cancers. Impact: Further research is warranted to elucidate the mechanisms underlying these observations. Cancer Epidemiol Biomarkers Prev; 20(4); 658-64. (C) 2011 AACR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of genetic factors on asthma is well recognized but poorly understood. We tested the hypothesis that different mouse strains present different lung tissue strip mechanics in a model of chronic allergic asthma and that these mechanical differences may be potentially related to changes of extracellular matrix composition and/or contractile elements in lung parenchyma. Oscillatory mechanics were analysed before and after acetylcholine (ACh) in C57BL/10, BALB/c, and A/J mice, subjected or not to ovalbumin sensitization and challenge. In controls, tissue elastance (E) and resistance (R), collagen and elastic fibres` content, and alpha-actin were higher in A/J compared to BALB/c mice, which, in turn, were more elevated than in C57BL/10. A similar response pattern was observed in ovalbumin-challenged animals irrespective of mouse strain. E and R augmented more in ovalbumin-challenged A/J [E: 22%, R: 18%] than C57BL/10 mice [E: 9.4%, R: 11 %] after ACh In conclusion, lung parenchyma remodelled differently yielding distinct in vitro mechanics according to mouse strain. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral tolerance attenuates changes in in vitro lung tissue mechanics and extracellular matrix remodeling induced by chronic allergic inflammation in guinea pigs. J Appl Physiol 104: 1778-1785, 2008. First published April 3, 2008; doi:10.1152/japplphysiol.00830.2007.-Recent studies emphasize the presence of alveolar tissue inflammation in asthma. Immunotherapy has been considered a possible therapeutic strategy for asthma, and its effect on lung tissue had not been previously investigated. Measurements of lung tissue resistance and elastance were obtained before and after both ovalbumin and acetylcholine challenges. Using morphometry, we assessed eosinophil and smooth muscle cell density, as well as collagen and elastic fiber content, in lung tissue from guinea pigs with chronic pulmonary allergic inflammation. Animals received seven inhalations of ovalbumin (1-5 mg/ml; OVA group) or saline (SAL group) during 4 wk. Oral tolerance (OT) was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st inhalation (OT1 group) or after the 4th (OT2 group). The ovalbumin-exposed animals presented an increase in baseline and in postchallenge resistance and elastance related to baseline, eosinophil density, and collagen and elastic fiber content in lung tissue compared with controls. Baseline and post-ovalbumin and acetylcholine elastance and resistance, eosinophil density, and collagen and elastic fiber content were attenuated in OT1 and OT2 groups compared with the OVA group. Our results show that inducing oral tolerance attenuates lung tissue mechanics, as well as eosinophilic inflammation and extracellular matrix remodeling induced by chronic inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Up to 60% of chronic obstructive pulmonary disease ( COPD) patients can present airway hyperresponsiveness. However, it is not known whether the peripheral lung tissue also shows an exaggerated response to agonists in COPD. Objectives: To investigate the in vitro mechanical behavior and the structural and inflammatory changes of peripheral lung tissue in COPD patients and compare to nonsmoking controls. Methods: We measured resistance and elastance at baseline and after acetylcholine (ACh) challenge of lung strips obtained from 10 COPD patients and 10 control subjects. We also assessed the alveolar tissue density of neutrophils, eosinophils, macrophages, mast cells and CD8+ and CD4+ cells, as well as the content of alpha-smooth muscle actin-positive cells and elastic and collagen fibers. We further investigated whether changes in in vitro parenchymal mechanics correlated to structural and inflammatory parameters and to in vivo pulmonary function. Results: Values of resistance after ACh treatment and the percent increase in tissue resistance (%R) were higher in the COPD group (p <= 0.03). There was a higher density of macrophages and CD8+ cells (p < 0.05) and a lower elastic content (p = 0.003) in the COPD group. We observed a positive correlation between %R and eosinophil and CD8+ cell density (r = 0.608, p = 0.002, and r = 0.581, p = 0.001, respectively) and a negative correlation between %R and the ratio of forced expiratory volume in 1 s to forced vital capacity (r = -0.451, p < 0.05). Conclusions: The cholinergic responsiveness of parenchymal lung strips is increased in COPD patients and seems to be related to alveolar tissue eosinophilic and CD8 lymphocytic inflammation and to the degree of airway obstruction on the pulmonary function test. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: In vitro studies and ambulatory ECG recordings from the MERLIN TIMI-36 clinical trial suggest that the novel antianginal agent ranolazine may have the potential to suppress atrial arrhythmias. However, there are no reports of effects of ranolazine on atrial electrophysiologic properties in large intact animals. Methods and Results: In 12 closed-chest anesthetized pigs, effects of intravenous ranolazine (similar to 9 mu M plasma concentration) on multisite atrial effective refractory period (ERP), conduction time (CT), and duration and inducibility of atrial fibrillation (AF) initiated by intrapericardial acetylcholine were investigated. Ranolazine increased ERP by a median of 45 ms (interquartile range 29-50 ms; P < 0.05, n = 6) in right and left atria compared to control at pacing cycle length (PCL) of 400 ms. However, ERP increased by only 28 (24-34) ms in right ventricle (P < 0.01, n = 6). Ranolazine increased atrial CT from 89 (71-109) ms to 98 (86-121) ms (P = 0.04, n = 6) at PCL of 400 ms. Ranolazine decreased AF duration from 894 (811-1220) seconds to 621 (549-761) seconds (P = 0.03, n = 6). AF was reinducible in 1 of 6 animals after termination with ranolazine compared with all 6 animals during control period (P = 0.07). Dominant frequency (DF) of AF was reduced by ranolazine in left atrium from 11.7 (10.7-20.5) Hz to 7.6 (2.9-8.8) Hz (P = 0.02, n = 6). Conclusions: Ranolazine, at therapeutic doses, increased atrial ERP to greater extent than ventricular ERP and prolonged atrial CT in a frequency-dependent manner in the porcine heart. AF duration and DF were also reduced by ranolazine. Potential role of ranolazine in AF management merits further investigation. (J Cardiovasc Electrophysiol, Vol. 20, pp. 796-802, July 2009).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Asymmetric dimethylarginine (ADMA), produced during protein metabolism, is an endogenous inhibitor of nitric oxide synthase, but little is known about its direct vasoactive properties in different arterial beds. Material/Methods: Segments of canine coronary, renal, and femoral arteries were pretreated with increasing concentrations of ADMA, and endothelial function was evaluated in organ chambers. Results: In precontracted canine coronary arteries, the highest concentrations of ADMA inhibited endothelium-dependent relaxation mediated by acetylcholine (n=7), but no concentration of ADMA inhibited receptor-independent relaxation mediated by calcium ionophore (n=7) (P<.001). The effect of ADMA on acetylcholine-mediated relaxation was shown to be competitive inhibition of the nitric oxide synthase pathway, because the addition of L-arginine (10(-3) M), but not D-arginine (101 M), reversed the effect produced by 10(-5) M ADMA. Further, ADMA did not alter endothelium-independent relaxation mediated by sodium nitroprusside (10(-9) to 10(-6) M; n=7). Femoral arteries (n=7) and renal arteries (n=7) were more sensitive to ADMA than were coronary arteries, and they demonstrated significant ADMA inhibition to receptor dependent relaxation induced by acetylcholine (P=.03 and P=.01, respectively) and to receptor-independent relaxation induced by calcium ionophore (P=.02 and P=.01, respectively). Conclusions: Endothelium-dependent relaxation mediated by ADMA is more marked in femoral and renal arteries than in coronary arteries. The response in coronary arteries may be overall protective. Considering these different effects in various artery types, the role of ADMA as a confiable and specific cardiovascular risk factor is questioned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic ethanol Consumption and hypertension are related. In the current study we investigated whether changes in reactivity of the mesenteric arterial bed could account for the increased blood pressure associated with chronic ethanol intake. Changes in reactivity to phenylephrine and acetylcholine were investigated in the perfused mesenteric bed from rats treated with ethanol for 2 or 6 weeks and their age-matched controls. Mild hypertension was observed in chronically ethanol-treated rats. Treatment of rats for 6 weeks induced an increase in the contractile response of endothelium-intact mesenteric bed to phenylephrine, but not denuded rat mesenteric bed. The phenylephrine-induced increase in perfusion pressure was not altered after 2 weeks` treatment with ethanol. Moreover, acetylcholine-induced endothelium-dependent relaxation was reduced by ethanol treatment for 6 weeks, but not 2 weeks. Pre-treatment with indometacin, a cyclooxygenase inhibitor, reduced the maximum effect induced by phenylephrine (E-max) in endothelium-intact mesenteric bed from both control and ethanol-treated rats. No differences in the E-max values for phenylephrine were observed between groups in the presence of indometacin. L-NNA, a nitric oxide (NO) synthase (NOS) inhibitor, increased the E-max for phenylephrine in endothelium-intact mesenteric bed from control rats but not from ethanol-treated rats. Levels of endothelial NOS (eNOS) mRNA were not altered by chronic ethanol consumption. However, chronic ethanol intake strongly reduced eNOS protein levels in the mesenteric bed. This study shows that chronic ethanol consumption increases blood pressure and alters the reactivity of the mesenteric bed. Moreover, the increased vascular response to phenylephrine observed in the mesenteric bed is maintained by two mechanisms: an increased release of endothelial-derived vasoconstrictor prostanoids and a reduced modulatory action of endothelial NO, which seems to be associated with reduced post-transcriptional expression of eNOS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT(1A/1B), 5-HT(6), and 5-HT(7) serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 mu g/0.2 mu L) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT(1A) serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT(1B), 5-HT(6), and 5-HT(7) serotonergic receptors blockade) when centrally administered. The present data also Suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tamoxifen has been suggested to produce beneficial cardiovascular effects, although the mechanisms for these effects are not fully known. Moreover, although tamoxifen metabolites may exhibit 30-100 times higher potency than the parent drug, no previous study has compared the effects produced by tamoxifen and its metabolites on vascular function. Here, we assessed the vascular responses to acetylcholine and sodium nitroprusside on perfused hindquarter vascular bed of rats treated with tamoxifen or its main metabolites (N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen, and endoxifen) for 2 weeks. Plasma and whole-blood thiobarbituric acid reactive substances (TBARS) concentrations were determined using a fluorometric method. Plasma nitrite and NOx (nitrite + nitrate) concentrations were determined using an ozone-based chemiluminescence assay and Griess reaction, respectively. Treatment with tamoxifen reduced the responses to acetylcholine (pD(2) = 2.2 +/- 0.06 and 1.9 +/- 0.05 after vehicle and tamoxifen, respectively; P < 0.05), while its metabolites improved these responses (pD(2) = 2.5 +/- 0.04 after N-desmethyl-tamoxifen, 2.5 +/- 0.03 after 4-hydroxy-tamoxifen, and 2.6 +/- 0.08 after endoxifen; P < 0.01). Tamoxifen and its metabolites showed no effect on endothelial-independent responses to sodium nitroprusside (P > 0.05). While tamoxifen treatment resulted in significantly higher plasma and whole blood lipid peroxide levels (37% and 62%, respectively; both P < 0.05), its metabolites significantly decreased lipid peroxide levels (by approximately 50%; P < 0.05). While treatment with tamoxifen decreased the concentrations of markers of nitric oxide formation by approximately 50% (P < 0.05), tamoxifen metabolites had no effect on these parameters (P > 0.05). These results suggest that while tamoxifen produces detrimental effects, its metabolites produce counteracting beneficial effects on the vascular system and on nitric oxide/reactive oxygen species formation.