982 resultados para Access structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in land use and land cover throughout the eastern half of North America have caused substantial declines in populations of birds that rely on grassland and shrubland vegetation types, including socially and economically important game birds such as the Northern Bobwhite (Colinus virginianus; hereafter bobwhites). As much attention is focused on habitat management and restoration for bobwhites, they may act as an umbrella species for other bird species with similar habitat requirements. We quantified the relationship of bobwhites to the overall bird community and evaluated the potential for bobwhites to act as an umbrella species for grassland and shrubland birds. We monitored bobwhite presence and bird community composition within 31 sample units on selected private lands in the south-central United States from 2009 to 2011. Bobwhites were strongly associated with other grassland and shrubland birds and were a significant positive predictor for 9 species. Seven of these, including Bell's Vireo (Vireo bellii), Dicksissel (Spiza americana), and Grasshopper Sparrow (Ammodramus savannarum), are listed as species of conservation concern. Species richness and occupancy probability of grassland and shrubland birds were higher relative to the overall bird community in sample units occupied by bobwhites. Our results show that bobwhites can act as an umbrella species for grassland and shrubland birds, although the specific species in any given situation will depend on region and management objectives. These results suggest that efficiency in conservation funding can be increased by using public interest in popular game species to leverage resources to meet multiple conservation objectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).