258 resultados para Accelerometers.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Every time more we hear in our everyday statements like "I'm stressed!", "Don´t worry me more than I am." But in what sense can we use technology to combat these congestions that we deal with daily? Well, one way would be to use technology to create objects, systems or applications that can spoil us and preferably be imperceptible by the user and, for this we have the ubiquitous computing and nurturant technologies. The ubiquitous computing is increasingly discussed as well as ways to make your computer more subtle in the view of the user, which is subject of research and development. The use of technology as a source of relaxation and spoil us is a strand that is being explored in the context of nurturant technologies. Accordingly, this thesis is focused on the development of an object and several applications with which we can interact. The object and applications have the purpose to spoil us and help us relax after a long day at work or in some situation more stressful. The object developed employs technologies like the use of accelerometers and the applications developed employs communications between computers and Web cameras. This thesis begins with a brief introduction to the areas of research and others that we can include in this thesis, such as ubiquitous computing and the nurturant technologies, providing yet general information on stress and ways to mitigate it. Later is described some of the work already done and that influenced this thesis as well as the prototypes developed and the experiences performed, ending with a general conclusion and future work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Present work proposed to map and features the wear mechanisms of structural polymers of engineering derived of the sliding contact with a metallic cylindrical spindle submitted to eccentricity due to fluctuations in it is mass and geometric centers. For this it was projected and makes an experimental apparatus from balancing machine where the cylindrical counterbody was supported in two bearings and the polymeric coupon was situated in a holder with freedom of displacement along counterbody. Thus, the experimental tests were standardized using two position of the two bearings (Fixed or Free) and seven different positions along the counterbody, that permit print different conditions to the stiffness from system. Others parameters as applied normal load, sliding velocity and distance were fixed. In this investigation it was used as coupon two structural polymers of wide quotidian use, PTFE (polytetrafluroethylene) and PEEK (poly-ether-ether-ketone) and the AISI 4140 alloy steel as counterbody. Polymeric materials were characterized by thermal analysis (thermogravimetric, differential scanning calorimetry and dynamic-mechanical), hardness and rays-X diffractometry. While the metallic material was submitted at hardness, mechanical resistance tests and metallographic analysis. During the tribological tests were recorded the heating response with thermometers, yonder overall velocity vibration (VGV) and the acceleration using accelerometers. After tests the wear surface of the coupons were analyzed using a Scanning Electronic Microscopy (SEM) to morphological analysis and spectroscopy EDS to microanalysis. Moreover the roughness of the counterbody was characterized before and after the tribological tests. It was observed that the tribological response of the polymers were different in function of their distinct molecular structure. It were identified the predominant wear mechanisms in each polymer. The VGV of the PTFE was smaller than PEEK, in the condition of minimum stiffness, in function of the higher loss coefficient of that polymer. Wear rate of the PTFE was more of a magnitude order higher than PEEK. With the results was possible developed a correlation between the wear rate and parameter (E/ρ)1/2 (Young modulus, E, density, ρ), proportional at longitudinal elastic wave velocity in the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical activity is one of the main components of a healthy lifestyle, responsible for many health benefits. Despite being considered important for both disease prevention and health promotion there is high prevalence of sedentary behavior in the elderly population. Questionnaires are practical and feasible instruments for assessing levels of physical activity. However, they may have limitations in older age ranges. Accelerometers, movement sensors that make physical activity data more objective, emerge as reliable measuring devices. Aim: Determine the validity of the International Physical Activity Questionnaire (IPAQ) adapted for elderly with accelerometry in elderly women. Methods: 57 elderly women, with mean age of 66.05 ± 5.98 years who took part in hypertension control and physical activity incentive programs were assessed in relation to objective and subjective measures of physical activity. The accelerometer was used for 07 consecutive days, 24 hours per day before the IPAQ was applied. Data were analyzed using measures of central tendency and dispersion to characterize the sample according to variables collected. To check the validity of the data we used the Spearman correlation test, considering a significance level of p <0.05. Results: With respect to the categories of physical activity obtained by IPAQ, 46.4% developed moderate physical activity, followed by a high (30.3%) and low level (23.2%). There was a negative correlation only between self-reported time spent sitting and time spent on light activities as measured by accelerometry (r = - 0.408; p = 0.003) and mean activity level (counts/min) with physical activity levels evaluated by IPAQ (r = 0.297; p = 0.036). Conclusion: The IPAQ used in elderly women shows moderate to low validity levels according to accelerometry measures. Assessment of sedentary activities exhibited acceptable levels compared to accelerometry; however, moderate (r = 0.096; p > 0.05) to vigorous (r = 0.098; p > 0.05) activities were not correlated, demonstrating the inability of IPAQ to evaluate this type of activity in elderly women

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fiber reinforced epoxy composites are used in a wide variety of applications in the aerospace field. These materials have high specific moduli, high specific strength and their properties can be tailored to application requirements. In order to screening optimum materials behavior, the effects of external environments on the mechanical properties during usage must be clearly understood. The environmental action, such as high moisture concentration, high temperatures, corrosive fluids or ultraviolet radiation (UV), can affect the performance of advanced composites during service. These factors can limit the applications of composites by deteriorating the mechanical properties over a period of time. Properties determination is attributed to the chemical and/or physical damages caused in the polymer matrix, loss of adhesion of fiber/resin interface, and/or reduction of fiber strength and stiffness. The dynamic elastic properties are important characteristics of glass fiber reinforced composites (GRFC). They control the damping behavior of composite structures and are also an ideal tool for monitoring the development of GFRC's mechanical properties during their processing or service. One of the most used tests is the vibration damping. In this work, the measurement consisted of recording the vibration decay of a rectangular plate excited by a controlled mechanism to identify the elastic and damping properties of the material under test. The frequency amplitude were measured by accelerometers and calculated by using a digital method. The present studies have been performed to explore relations between the dynamic mechanical properties, damping test and the influence of high moisture concentration of glass fiber reinforced composites (plain weave). The results show that the E' decreased with the increase in the exposed time for glass fiber/epoxy composites specimens exposed at 80 degrees C and 90% RH. The E' values found were: 26.7, 26.7, 25.4, 24.7 and 24.7 GPa for 0, 15, 30, 45 and 60 days of exposure, respectively. (c) 2005 Springer Science + Business Media, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) has diverse potential applications, and many groups work in the development of tools and techniques for monitoring structural performance. These systems use arrays of sensors and can be integrated with remote or local computers. There are several different approaches that can be used to obtain information about the existence, location and extension of faults by non destructive tests. In this paper an experimental technique is proposed for damage location based on an observability grammian matrix. The dynamic properties of the structure are identified through experimental data using the eigensystem realization algorithm (ERA). Experimental tests were carried out in a structure through varying the mass of some elements. Output signals were obtained using accelerometers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple method for designing a digital state-derivative feedback gain and a feedforward gain such that the control law is equivalent to a known and adequate state feedback and feedforward control law of a digital redesigned system is presented. It is assumed that the plant is a linear controllable, time-invariant, Single-Input (SI) or Multiple-Input (MI) system. This procedure allows the use of well-known continuous-time state feedback design methods to directly design discrete-time state-derivative feedback control systems. The state-derivative feedback can be useful, for instance, in the vibration control of mechanical systems, where the main sensors are accelerometers. One example considering the digital redesign with state-derivative feedback of a helicopter illustrates the proposed method. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hardness is a property largely used in material specifications, mechanical and metallurgical research and quality control of several materials. Specifically for timber, Janka hardness is a simple, quick and easy test, with good correlations with the compression parallel to grain strength, a strong reference in structural classification for this material. More recently, international studies have reported the use of Brinell hardness for timber assessment which resumes the advantages previously mentioned for Janka hardness and make it easier to be performed in the field, especially because of the lower magnitude of the involved loads. A first generation of an equipment for field evaluation of hardness in wood - Portable Hardness tester for wood - based on Brinell hardness has already been developed by the Research Group on Forest Products from FCA/UNESP, Brazil, with very good correlations between the evaluated hardness and several other mechanical properties of the material when performing tests with different species of native and reforested wood (traditionally used as ties - sleepers - in railways). This paper presents results obtained in the experimental program with the first generation of this equipment and preliminary tests with its second generation, which uses accelerometers to substitute the indentation measurements in wood. For the first generation of the equipment functional and calibration tests were carried out using 16 native and reforestation timber lots, among there E. citriodora, E. tereticornis, E. saligna, E. urophylla, E. grandis, Goupia glabra and Bagassa guianenses, with different origins and ages. The results obtained confirm its potential in the classification of specimens, with inclusion errors varying from 4.5% to 16.6%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feedback control systems have been used to move the muscles and joints of the limbs of paraplegic patients. The feedback signal, related to the knee joint angle, can be obtained by using an electrogoniometer. However, the use of accelerometers can help the measurements due the facility of adhering these devices to the skin. Accelerometers are also very suitable for these applications due their small dimensions and weight. In this paper a new method for designing a control system that can vary the knee joint angle using Functional Electrical Stimulation (FES) is presented, as well as a simulation with parameters values available in the literature. The nonlinear control system was represented by a Takagi-Sugeno fuzzy model and the feedback signals were obtained by using accelerometers. The design method considered all plant nonlinearities and was efficient and reliable to control the leg position of a paraplegic patient with the angle of the knee ranging from 0° to 30°, considering electric stimulation at the quadriceps muscle. The proposed method is viable and offers a new alternative for designing control systems of the knee joint angle using more comfortable sensors for the patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The implementation of vibration analysis techniques based on virtual instrumentation has spread increasingly in the academic and industrial branch, since the use of any software for this type of analysis brings good results at low cost. Among the existing software for programming and creation of virtual instruments, the LabVIEW was chosen for this project. This software has good interface with the method of graphical programming. In this project, it was developed a system of rotating machine condition monitoring. This monitoring system is applied in a test stand, simulating large scale applications, such as in hydroelectric, nuclear and oil exploration companies. It was initially used a test stand, where an instrumentation for data acquisition was inserted, composed of accelerometers and inductive proximity sensors. The data collection system was structured on the basis of an NI 6008 A/D converter of National Instruments. An electronic circuit command was developed through the A/D converter for a remote firing of the test stand. The equipment monitoring is performed through the data collected from the sensors. The vibration signals collected by accelerometers are processed in the time domain and frequency. Also, proximity probes were used for the axis orbit evaluation and an inductive sensor for the rotation and trigger measurement. © (2013) Trans Tech Publications, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)