904 resultados para Acanthocardia aculeata
Resumo:
We present a high resolution, multiproxy study of the relationship between pelagic and benthic environments of a coastal upwelling system in the subtropical NE Atlantic Ocean. Marine sediments corresponding to late MIS3 to the Holocene in the radiocarbon dated core GeoB7926, retrieved off Mauritania (21°N) were analysed to reconstruct productivity in surface waters and its linkage to deep waters during the last 35 ka BP. High latitude cold events and changes in atmospheric and oceanographic dynamics influenced upwelling intensity over this time period. Subsequently, this caused changes in primary productivity off this low-latitude coastal upwelling locality. The benthic foraminiferal fauna displays four main community shifts corresponding to fundamental climatic events, first of all during late MIS3 (35-28 ka BP), secondly from 28 to 19 ka BP (including Heinrich event 2 and the LGM), thirdly within Heinrich event 1, the Bølling Allerød and the Younger Dryas (18-11.5 ka BP) and finally during the Holocene (11.5-0 ka BP). In particular, strong pelagic-benthic coupling is apparent in MIS 3, as demonstrated by increased primary productivity, indicated by moderate DAR and the dominance of benthic foraminiferal species which prefer fresh phytodetritus. A decline in upwelling intensity and nutrient availability follows, which resulted in a proportionately larger amount of older, degraded matter, provoking a shift in the benthic foraminifera fauna composition. This rapid response of the benthic environment continues with a progressive increase in upwelling intensity due to sea level and oceanographic changes and according high surface production during the LGM. During Heinrich event 1 and the Younger Dryas, extreme levels of primary production actually hindered benthic environment through the development of low oxygen conditions. After this period, a final change in benthic foraminiferal community composition occurs which indicates a return to more oxygenated conditions during the Holocene.
Resumo:
During Cruise 54 of R/V Akademik Mstislav Keldysh macrobenthos of the Novaya Zemlya Trough was studied with use of a Sigsby trawl along a submeridional transect near 75°30'N at depth range from 68 to 362 m. In total 140 species of bottom animals were found. Relative role of taxons was assessed using three parameters: abundance, biomass, and energy flow. Similarity of the parameters was used for comparison of samples. New material greatly contributes to data on composition of fauna and structure of communities of the studied region. It was revealed that small scyphozoid polyps and sipunculoids play an important role in the trough's community. Presence of a community dominated by Ophiocten sericeum (with important role of small bivalves) was revealed for the first time not only at the eastern by also at the western slope of the Novaya Zemlya Trough. The sharpest changes in composition and structure of the bottom community were confined to a zone of transition from the trough floor to the slope. These changes are determined by specificity of the macrorelief (of the floor and slope), composition of ground (soft brown silts abound in rhizopods and dense gray silts with admixture of pebbles), and possibly by hydrodynamic processes near the bottom.
Resumo:
Late Eocene to Pleistocene planktonic foraminifers from Leg 120 Holes 747A and 749B on the Kerguelen Plateau were quantitatively analyzed. Microperforate tenuitellid forms dominate the Oligocene to middle Miocene, and 17 species (including the new species Tenuitella jamesi and Tenuitellinata selleyi) are recorded. A lineage zonation of tenuitellid foraminifers is proposed as an alternative scheme for refinement of the Oligocene-Miocene biostratigraphy in high latitudes. Progressive or abrupt alterations in morphological characters within this lineage, producing different morphotypes or species, coincided with prolonged or sudden changes in paleoclimate. These microperforate planktonic foraminifers thus appear to have potential as indicators of cold-water masses and temperature fluctuations in post-Eocene oceans.
Resumo:
We report on benthic foraminifer results from Site 717 in the Distal Bengal Fan. Only 80 out of 380 samples contained useful benthic foraminifer information. However, we were able to identify four assemblages: 1. A present-day one dominated by Nuttallides umbonifera with some North Atlantic species; 2. An agglutinated fauna consisting of one species; 3. A reworked assemblage consisting of shallow-water forms; and 4. A reworked fauna consisting of an abundance of all kinds of forms including Cretaceous species. The reworked assemblage 4, we believe, represents a period when fan sediments were blocked from this area by east-west trending intraplate deformation. In the remainder of the core section, sedimentation appears to be dominated by Fan deposition with abundant terrestrial debris. In the infrequent pelagic intervals, it appears that abyssal water masses changed little since the late Miocene.
Resumo:
Paleobathymetric assessments of fossil foraminiferal faunas play a significant role in the analysis of the paleogeographic, sedimentary, and tectonic histories of New Zealand's Neogene marine sedimentary basins. At depths >100 m, these assessments often have large uncertainties. This study, aimed at improving the precision of paleodepth assessments, documents the present-day distribution of deep-sea foraminifera (>63 µm) in 66 samples of seafloor sediment at 90-700 m water depth (outer shelf to mid-abyssal), east of New Zealand. One hundred and thirty-nine of the 465 recorded species of benthic foraminifera are new records for the New Zealand region. Characters of the foraminiferal faunas which appear to provide the most useful information for estimating paleobathymetry are, in decreasing order of reliability: relative abundance of common benthic species; benthic species associations; upper depth limits of key benthic species; and relative abundance of planktic foraminifera. R mode cluster analysis on the quantitative census data of the 58 most abundant species of benthic foraminifera produced six species associations within three higher level clusters: (1) calcareous species most abundant at mid-bathyal to outer shelf depths (<1000 m); (2) calcareous species most abundant at mid-bathyal and greater depths (>600 m); (3) agglutinated species mostly occurring at deep abyssal depths (>3000 m). A detrended correspondence analysis ordination plot exhibits a strong relationship between these species associations and bathymetry. This is manifest in the bathymetric ranges of the relative abundance peaks of many of the common benthic species (e.g., Abditodentrix pseudothalmanni 500-2800 m, Bolivina robusta 200-650 m, Bulimina marginata f. marginata 20-600 m, B. marginata f. aculeata 400-3000 m, Cassidulina norvangi 1000-4500 m, Epistominella exigua 1000-4700 m, and Trifarina angulosa 10-650 m), which should prove useful in paleobathymetric estimates. The upper depth limits of 28 benthic foraminiferal species (e.g., Fursenkoina complanata 200 m, Bulimina truncana 450 m, Melonis affinis 550 m, Eggerella bradyi 750 m, and Cassidulina norvangi 1000 m) have potential to improve the precision of paleobathymetric estimates based initially on the total faunal composition. The planktic percentage of foraminiferal tests increases from outer shelf to upper abyssal depths followed by a rapid decline within the foraminiferal lysocline (below c. 3600 m). A planktic percentage <50% is suggestive of shelf depths, and >50% is suggestive of bathyal or abyssal depths above the CCD. In the abyssal zone there is dramatic taphonomic loss of most agglutinated tests (except some textulariids) at burial depths of 0.1-0.2 m, which negates the potential usefulness of these taxa in paleobathymetric assessments.