966 resultados para Abstraction Hierarchy
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A simple description of the KP hierarchy and its multi-hamiltonian structure is given in terms of two Bose currents. A deformation scheme connecting various W-infinity algebras and the relation between two fundamental nonlinear structures are discussed. Properties of Faá di Bruno polynomials are extensively explored in this construction. Applications of our method are given for the Conformal Affine Toda model, WZNW models and discrete KP approach to Toda lattice chain.
Resumo:
Access control is a fundamental concern in any system that manages resources, e.g., operating systems, file systems, databases and communications systems. The problem we address is how to specify, enforce, and implement access control in distributed environments. This problem occurs in many applications such as management of distributed project resources, e-newspaper and payTV subscription services. Starting from an access relation between users and resources, we derive a user hierarchy, a resource hierarchy, and a unified hierarchy. The unified hierarchy is then used to specify the access relation in a way that is compact and that allows efficient queries. It is also used in cryptographic schemes that enforce the access relation. We introduce three specific cryptography based hierarchical schemes, which can effectively enforce and implement access control and are designed for distributed environments because they do not need the presence of a central authority (except perhaps for set- UP).
Resumo:
Sickness behavior is a set of behavioral changes that are part of an adaptive strategy to overcome infection. Mice that interact with conspecifics displaying sickness behavior also show relevant behavioral changes. In this work we sought to determine the role of sickness behavior display by a dominant mouse as a promoter of hierarchy instability. We treated the dominant mouse within a dyad with lipopolysaccharide (LPS) (400 mu g/kg, i.p.) for three consecutive days and assessed social dominance behavior. Since elder animals display increased inflammatory responses and the behaviors toward conspecifics are influenced by kinship we also assessed whether kinship and age, might influence sickness related hierarchy instability. Our results show that administration of LPS in the dominant mouse promotes social instability within a dyad, and indicates that this instability could be influenced by kinship and age. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In protein databases there is a substantial number of proteins structurally determined but without function annotation. Understanding the relationship between function and structure can be useful to predict function on a large scale. We have analyzed the similarities in global physicochemical parameters for a set of enzymes which were classified according to the four Enzyme Commission (EC) hierarchical levels. Using relevance theory we introduced a distance between proteins in the space of physicochemical characteristics. This was done by minimizing a cost function of the metric tensor built to reflect the EC classification system. Using an unsupervised clustering method on a set of 1025 enzymes, we obtained no relevant clustering formation compatible with EC classification. The distance distributions between enzymes from the same EC group and from different EC groups were compared by histograms. Such analysis was also performed using sequence alignment similarity as a distance. Our results suggest that global structure parameters are not sufficient to segregate enzymes according to EC hierarchy. This indicates that features essential for function are rather local than global. Consequently, methods for predicting function based on global attributes should not obtain high accuracy in main EC classes prediction without relying on similarities between enzymes from training and validation datasets. Furthermore, these results are consistent with a substantial number of studies suggesting that function evolves fundamentally by recruitment, i.e., a same protein motif or fold can be used to perform different enzymatic functions and a few specific amino acids (AAs) are actually responsible for enzyme activity. These essential amino acids should belong to active sites and an effective method for predicting function should be able to recognize them. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In spite of the high prevalence and negative impact of depression, little is known about its pathophysiology. Basic research on depression needs new animal models in order to increase knowledge of the disease and search for new therapies. The work presented here aims to provide a neurobiologically validated model for investigating the relationships among sickness behavior, antidepressants treatment, and social dominance behavior. For this purpose, dominant individuals from dyads of male Swiss mice were treated with the bacterial endotoxin lipopolysaccharide (LPS) to induce social hierarchy destabilization. Two groups were treated with the antidepressants imipramine and fluoxetine prior to LPS administration. In these groups, antidepressant treatment prevented the occurrence of social destabilization. These results indicate that this model could be useful in providing new insights into the understanding of the brain systems involved in depression.
Resumo:
Context-aware computing is currently considered the most promising approach to overcome information overload and to speed up access to relevant information and services. Context-awareness may be derived from many sources, including user profile and preferences, network information, sensor analysis; usually context-awareness relies on the ability of computing devices to interact with the physical world, i.e. with the natural and artificial objects hosted within the "environment”. Ideally, context-aware applications should not be intrusive and should be able to react according to user’s context, with minimum user effort. Context is an application dependent multidimensional space and the location is an important part of it since the very beginning. Location can be used to guide applications, in providing information or functions that are most appropriate for a specific position. Hence location systems play a crucial role. There are several technologies and systems for computing location to a vary degree of accuracy and tailored for specific space model, i.e. indoors or outdoors, structured spaces or unstructured spaces. The research challenge faced by this thesis is related to pedestrian positioning in heterogeneous environments. Particularly, the focus will be on pedestrian identification, localization, orientation and activity recognition. This research was mainly carried out within the “mobile and ambient systems” workgroup of EPOCH, a 6FP NoE on the application of ICT to Cultural Heritage. Therefore applications in Cultural Heritage sites were the main target of the context-aware services discussed. Cultural Heritage sites are considered significant test-beds in Context-aware computing for many reasons. For example building a smart environment in museums or in protected sites is a challenging task, because localization and tracking are usually based on technologies that are difficult to hide or harmonize within the environment. Therefore it is expected that the experience made with this research may be useful also in domains other than Cultural Heritage. This work presents three different approaches to the pedestrian identification, positioning and tracking: Pedestrian navigation by means of a wearable inertial sensing platform assisted by the vision based tracking system for initial settings an real-time calibration; Pedestrian navigation by means of a wearable inertial sensing platform augmented with GPS measurements; Pedestrian identification and tracking, combining the vision based tracking system with WiFi localization. The proposed localization systems have been mainly used to enhance Cultural Heritage applications in providing information and services depending on the user’s actual context, in particular depending on the user’s location.
Resumo:
The miniaturization race in the hardware industry aiming at continuous increasing of transistor density on a die does not bring respective application performance improvements any more. One of the most promising alternatives is to exploit a heterogeneous nature of common applications in hardware. Supported by reconfigurable computation, which has already proved its efficiency in accelerating data intensive applications, this concept promises a breakthrough in contemporary technology development. Memory organization in such heterogeneous reconfigurable architectures becomes very critical. Two primary aspects introduce a sophisticated trade-off. On the one hand, a memory subsystem should provide well organized distributed data structure and guarantee the required data bandwidth. On the other hand, it should hide the heterogeneous hardware structure from the end-user, in order to support feasible high-level programmability of the system. This thesis work explores the heterogeneous reconfigurable hardware architectures and presents possible solutions to cope the problem of memory organization and data structure. By the example of the MORPHEUS heterogeneous platform, the discussion follows the complete design cycle, starting from decision making and justification, until hardware realization. Particular emphasis is made on the methods to support high system performance, meet application requirements, and provide a user-friendly programmer interface. As a result, the research introduces a complete heterogeneous platform enhanced with a hierarchical memory organization, which copes with its task by means of separating computation from communication, providing reconfigurable engines with computation and configuration data, and unification of heterogeneous computational devices using local storage buffers. It is distinguished from the related solutions by distributed data-flow organization, specifically engineered mechanisms to operate with data on local domains, particular communication infrastructure based on Network-on-Chip, and thorough methods to prevent computation and communication stalls. In addition, a novel advanced technique to accelerate memory access was developed and implemented.
Resumo:
The aim of this thesis is to go through different approaches for proving expressiveness properties in several concurrent languages. We analyse four different calculi exploiting for each one a different technique.
We begin with the analysis of a synchronous language, we explore the expressiveness of a fragment of CCS! (a variant of Milner's CCS where replication is considered instead of recursion) w.r.t. the existence of faithful encodings (i.e. encodings that respect the behaviour of the encoded model without introducing unnecessary computations) of models of computability strictly less expressive than Turing Machines. Namely, grammars of types 1,2 and 3 in the Chomsky Hierarchy.
We then move to asynchronous languages and we study full abstraction for two Linda-like languages. Linda can be considered as the asynchronous version of CCS plus a shared memory (a multiset of elements) that is used for storing messages. After having defined a denotational semantics based on traces, we obtain fully abstract semantics for both languages by using suitable abstractions in order to identify different traces which do not correspond to different behaviours.
Since the ability of one of the two variants considered of recognising multiple occurrences of messages in the store (which accounts for an increase of expressiveness) reflects in a less complex abstraction, we then study other languages where multiplicity plays a fundamental role. We consider the language CHR (Constraint Handling Rules) a language which uses multi-headed (guarded) rules. We prove that multiple heads augment the expressive power of the language. Indeed we show that if we restrict to rules where the head contains at most n atoms we could generate a hierarchy of languages with increasing expressiveness (i.e. the CHR language allowing at most n atoms in the heads is more expressive than the language allowing at most m atoms, with m
Resumo:
We present a detailed theoretical study of geometries, electronic structure, and energies of transition states and intermediates completing the full Bergman cycloaromatization pathway of ortho-substituted enediynes with a focus on polar and steric contributions to the kinetics and thermodynamics of hydrogen abstraction. This study provides a rare unambiguous example of remote substitution that affects reactivity of a neutral reactive intermediate through an σ framework.