987 resultados para Abiotic Stress


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of Participant 4 were: - Establishment and maintenance of a representative collection of AM fungal species in vivo on trap plant cultures. - Study of the effects of early mycorrhizal inoculation in the growth and health of in vitro plantlets and their subsequent behaviour in the nursery. - Effect of the mycorrhization of in vitro produced bananas and plantains on plant growth and health, under biotic stress conditions (nematode and fungi)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The provenance, half-life and biological activity of malondialdehyde (MDA) were investigated in Arabidopsis thaliana. We provide genetic confirmation of the hypothesis that MDA originates from fatty acids containing more than two methylene-linked double bonds, showing that tri-unsaturated fatty acids are the in vivo source of up to 75% of MDA. The abundance of the combined pool of free and reversibly bound MDA did not change dramatically in stress, although a significant increase in the free MDA pool under oxidative conditions was observed. The half-life of infiltrated MDA indicated rapid metabolic turnover/sequestration. Exposure of plants to low levels of MDA using a recently developed protocol powerfully upregulated many genes on a cDNA microarray with a bias towards those implicated in abiotic/environmental stress (e.g. ROF1 and XERO2). Remarkably, and in contrast to the activities of other reactive electrophile species (i.e. small vinyl ketones), none of the pathogenesis-related (PR) genes tested responded to MDA. The use of structural mimics of MDA isomers suggested that the propensity of the molecule to act as a cross-linking/modifying reagent might contribute to the activation of gene expression. Changes in the concentration/localisation of unbound MDA in vivo could strongly affect stress-related transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All ontogenetic stages of a life cycle are exposed to environmental conditions so that population persistence depends on the performance of both adults and offspring. Most studies analysing the influence of abiotic conditions on species performance have focussed on adults, while studies covering early life-history stages remain rare. We investigated the responses of early stages of two widely introduced ascidians, Styela plicata and Microcosmus squamiger, to different abiotic conditions. Stressors mimicked conditions in the habitats where both species can be found in their distributional ranges and responses were related to the selection potential of their populations by analysing their genetic diversity. Four developmental stages (egg fertilisation, larval development, settlement, metamorphosis) were studied after exposure to high temperature (30°C), low salinities (26 and 22 ) and high copper concentrations (25, 50 and 100 µg/L). Although most stressors effectively led to failure of complete development (fertilisation through metamorphosis), fertilisation and larval development were the most sensitive stages. All the studied stressors affected the development of both species, though responses differed with stage and stressor. S. plicata was overall more resistant to copper, and some stages of M. squamiger to low salinities. No relationship was found between parental genetic composition and responses to stressors. We conclude that successful development can be prevented at several life-history stages, and therefore, it is essential to consider multiple stages when assessing species' abilities to tolerate stress. Moreover, we found that early development of these species cannot be completed under conditions prevailing where adults live. These populations must therefore recruit from elsewhere or reproduce during temporal windows of more benign conditions. Alternatively, novel strategies or behaviours that increase overall reproductive success might be responsible for ensuring population survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole-genome duplication (WGD) is usually followed by gene loss and karyotype repatterning. Despite evidence of new adaptive traits associated with WGD, the underpinnings and evolutionary significance of such genome fractionation remain elusive. Here, we use Buckler mustard (Biscutella laevigata) to infer processes that have driven the retention of duplicated genes after recurrent WGDs. In addition to the β- and α-WGD events shared by all Brassicaceae, cytogenetic and transcriptome analyses revealed two younger WGD events that occurred at times of environmental changes in the clade of Buckler mustard (Biscutelleae): a mesopolyploidy event from the late Miocene that was followed by considerable karyotype reshuffling and chromosome number reduction and a neopolyploidy event during the Pleistocene. Although a considerable number of the older duplicates presented signatures of retention under positive selection, the majority of retained duplicates arising from the younger mesopolyploidy WGD event matched predictions of the gene balance hypothesis and showed evidence of strong purifying selection as well as enrichment in gene categories responding to abiotic stressors. Retention of large stretches of chromosomes for both genomic copies supported the hypothesis that cycles of WGD and biased fractionation shaped the genome of this stress-tolerant polypolyloid, promoting the adaptive recruitment of stress-responding genes in the face of environmental challenges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to examine if germination is a critical phase on Enterolobium glaziovii regeneration. Hence, the germinative response of E. glaziovii seeds was investigated in relation to some of the main environmental factors (temperature, light and water stress) to which its seeds are subjected in the forest, as well as its dormancy and the longevity of its burial seeds. According to our results, its seeds may be regarded as photoblastic neutral. They do not need alternating temperatures to germinate and can germinate under a broad range of water stress. However, only about 10% of E. glaziovii seeds remain viable after one year. In other words, the annual fruiting, instead seed longevity, seems to maintain the long-term seed availability of this species. Consequently, the seed longevity could be a critical phase of E. glaziovii germination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bromeliad seedlings are rarely found on sandy coastal plains (restinga), limited, probably, by stressful conditions and/or specific abiotic requirements for germination. The effect of water stress on rate, time, synchronicity and spreading of germination was evaluated here for three terrestrial bromeliads from the restinga of Maricá using osmotic solutions of polyethyleneglicol 6000 (PEG 6000), from 0.0 to -0.26 MPa for 30 days. Water stress induced by PEG lowered rate and increased time and synchronicity values, besides the number of daily events of bromeliad seed germination, under water potentials between 0.00 to -0.14 MPa. No seeds germinated under water potentials lower than -0.14 MPa. These results reinforce a constant and/or high moisture requirement for bromeliad seeds to germinate. We conclude that bromeliads are not able to act as pioneer plants through germination outside the vegetation islands of the restinga of Maricá, due to the inability of seeds to germinate under lower water potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly dynamic systems, often considered as resilient systems, are characterised by abiotic and biotic processes under continuous and strong changes in space and time. Because of this variability, the detection of overlapping anthropogenic stress is challenging. Coastal areas harbour dynamic ecosystems in the form of open sandy beaches, which cover the vast majority of the world’s ice-free coastline. These ecosystems are currently threatened by increasing human-induced pressure, among which mass-development of opportunistic macroalgae (mainly composed of Chlorophyta, so called green tides), resulting from the eutrophication of coastal waters. The ecological impact of opportunistic macroalgal blooms (green tides, and blooms formed by other opportunistic taxa), has long been evaluated within sheltered and non-tidal ecosystems. Little is known, however, on how more dynamic ecosystems, such as open macrotidal sandy beaches, respond to such stress. This thesis assesses the effects of anthropogenic stress on the structure and the functioning of highly dynamic ecosystems using sandy beaches impacted by green tides as a study case. The thesis is based on four field studies, which analyse natural sandy sediment benthic community dynamics over several temporal (from month to multi-year) and spatial (from local to regional) scales. In this thesis, I report long-lasting responses of sandy beach benthic invertebrate communities to green tides, across thousands of kilometres and over seven years; and highlight more pronounced responses of zoobenthos living in exposed sandy beaches compared to semi-exposed sands. Within exposed sandy sediments, and across a vertical scale (from inshore to nearshore sandy habitats), I also demonstrate that the effects of the presence of algal mats on intertidal benthic invertebrate communities is more pronounced than that on subtidal benthic invertebrate assemblages, but also than on flatfish communities. Focussing on small-scale variations in the most affected faunal group (i.e. benthic invertebrates living at low shore), this thesis reveals a decrease in overall beta-diversity along a eutrophication-gradient manifested in the form of green tides, as well as the increasing importance of biological variables in explaining ecological variability of sandy beach macrobenthic assemblages along the same gradient. To illustrate the processes associated with the structural shifts observed where green tides occurred, I investigated the effects of high biomasses of opportunistic macroalgae (Ulva spp.) on the trophic structure and functioning of sandy beaches. This work reveals a progressive simplification of sandy beach food web structure and a modification of energy pathways over time, through direct and indirect effects of Ulva mats on several trophic levels. Through this thesis I demonstrate that highly dynamic systems respond differently (e.g. shift in δ13C, not in δ15N) and more subtly (e.g. no mass-mortality in benthos was found) to anthropogenic stress compared to what has been previously shown within more sheltered and non-tidal systems. Obtaining these results would not have been possible without the approach used through this work; I thus present a framework coupling field investigations with analytical approaches to describe shifts in highly variable ecosystems under human-induced stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon has beneficial effects on many crops, mainly under biotic and abiotic stresses. Silicon can affect biochemical, physiological, and photosynthetic processes and, consequently, alleviates drought stress. However, the effects of Si on potato (Solanum tuberosum L.) plants under drought stress are still unknown. The objective of this study was to evaluate the effect of Si supply on some biochemical characteristics and yield of potato tubers, either exposed or not exposed to drought stress. The experiment was conducted in pots containing 50 dm(3) of a Typic Acrortox soil (33% clay, 4% silt, and 63% sand). The treatments consisted of the absence or presence of Si application (0 and 284.4 mg dm(-3)), through soil amelioration with dolomitic lime and Ca and Mg silicate, and in the absence or presence of water deficit (-0.020 MPa and -0.050 MPa soil water potential, respectively), with eight replications. Silicon application and water deficit resulted in the greatest Si concentration in potato leaves. Proline concentrations increased under lower water availability and higher Si availability in the soil, which indicates that Si may be associated with plant osmotic adjustment. Water deficit and Si application decreased total sugars and soluble proteins concentrations in the leaves. Silicon application reduced stalk lodging and increased mean tuber weight and, consequently, tuber yield, especially in the absence of water stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytochromes are red/far-red light photoreceptors that mediate a variety of photomorphogenic processes in plants, from germination to flowering. In addition, there is evidence that phytochromes are also part of the stress signalling response, especially in response to water deficit stress, which is the major abiotic factor limiting plant growth and crop productivity worldwide. In this study, we used the phyA (far red-insensitive; fri), phyB1 (temporary red-insensitive; tri) and phyB2 mutants of tomato (Solanum lycopersicum L.) to study the roles of these three phytochromes in drought stress responses. Compared to wild type (WT) plants grown under water-deficit stress conditions, the fri, tri, and phyB2 mutants did not exhibit altered dry weights, leaf areas, stomatal densities, or stomatal opening. The stomatal conductance of all three mutants was severely reduced under both fully-hydrated and water-deficit conditions. Although relative water contents did change after drought stress in each mutant, the most significant reduction in water potential during water stress was observed in the fri mutant. However, this mutant returned its water status to WT levels during rehydration. Although the phyB2 mutant lost more water from detached leaves during abscisic acid (ABA) treatment, phyB2 behaved like WT plants, indicating that this mutant was not insensitive to ABA. Overall, these results indicate that the phytochromes phyA, phyB1, and phyB2 modulate drought stress responses in tomato.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laurencia dendroidea shows high inter- and intrapopulation variability in the amount of the sesquiterpene elatol, caused by genetic variation as well as environmental factors. To test the independent effect of physical and nutritional conditions, the growth and the levels of elatol in L. dendroidea clones were evaluated under different conditions of temperature, salinity, irradiance, and culture medium in the laboratory. Growth of L. dendroidea was clearly affected by all these factors, but elatol levels were influenced only by temperature and salinity. Better conditions for growth did not produce a similar effect on elatol production in L. dendroidea, contradicting the carbon/nutrient balance and growth/differentiation balance models. On the contrary, severe conditions of temperature and salinity promoted a decrease in elatol levels, as predicted by the environmental stress model. Our results using clones indicated that abiotic factors clearly take part in fostering chemical variations observed in natural populations, in addition to genetic factors, and can promote differential susceptibility of plant specimens to natural enemies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Vegetation ist die wichtigste Quelle von organischen flüchtigen Verbindungen (auf Englisch volatile organic compounds,VOCs), die einen bemerkenswerten Einfluss auf der Chemie und Physik der Atmosphäre haben. VOCs beeinflussen die oxidative Kapazität der Atmosphäre und tragen zu der Bildung und zum Wachstum von sekundären organischen Aerosolen bei, welche einerseits eine Streuung und Reflektierung der Energie verursachen und andererseits sich an der Bildung und Entwicklung von Wolken beteiligen. Ziel dieser Arbeit war die Beschreibung und der Vergleich von VOC Emissionen aus Pflanzen aus zwei verschiedenen Ökosystemen: Mediterranes Ökosystem und Tropisches Ökosystem. Für diese Aufgabe wurden gewöhnliche Pflanzen von beiden Ökosystemen untersucht. Siebzehn Pflanzenspezies aus der Mittelmeergebiet, welches bekannt ist für seine Vielfalt an VOC emittierenden Pflanzen, wurden in die Untersuchungen einbezogen. Im Gegensatz zum mediterranen Ökosystem sind nur wenig Information verfügbar über VOC Emissionen aus Blättern tropischer Baumspezies. Vor diesem Hintergrund wurden sechsundzwanzig Baumspezies aus verschiedenen Ökotypen des Amazonasbeckens (Terra firme, Várzea und Igapó) wurden auf VOC Emissionen auf Blattebene mit einem Küvetten-System untersucht. Analysen von flüchtigen organischen Verbindungen wurden online mit PTR-MS und offline mittels Sammlung auf entsprechenden Adsorbern (Kartuschen) und nachfolgender GC-FID Analyse untersucht. Die höchsten Emissionen wurden für Isoprene beobachtete, gefolgt durch Monoterpene, Methanol und Aceton. Die meisten Mittelmeer Spezies emittierten eine hohe Vielfalt an Monoterpenspezies, hingegen zeigten nur fünf tropische Pflanzenspezies eine Monoterpene mit einen sehr konservativen Emissionsprofil (α-Pinen>Limonen>Sabinen >ß-Pinen). Mittelmeerpflanzen zeigten zusätzlich Emissionen von Sesquiterpenen, während bei der Pflanzen des Amazonas Beckens keine Sesquiterpenemissionen gefunden wurden. Dieser letzte Befund könnte aber auch durch eine niedrigere Sensitivität des Messsystems während der Arbeiten im Amazonasgebiet erklärt werden. Zusätzlich zu den Isoprenoidemissionen waren Methanolemissionen als Indikator für Wachtumsvorgänge sehr verbreitet in den meisten Pflanzenspezies aus tropischen und mediterranen Gebieten. Einige Pflanzenspezies beider Ökosystemen zeigten Acetonemissionen. rnrnVOC Emissionen werde durch eine große Vielfalt an biotischen und abiotischen Faktoren wie Lichtintensität, Temperatur, CO2 und Trockenheit beeinflusst. Ein anderer, öfter übersehener Faktor, der aber sehr wichtig ist für das Amazonas Becken, ist die regelmäßige Überflutung. In dieser Untersuchung wir fanden heraus, dass am Anfang einer Wurzelanoxie, die durch die Überflutung verursacht wurde, Ethanol und Acetaldehyd emittiert werden können, vor allem in Pflanzenspezies, die schlechter an eine unzureichende Sauerstoffversorgung bei Flutung adaptiert sind, wie z.B. Vatairea guianensis. Die Spezies Hevea spruceana, welche besser an Überflutung adaptiert ist, könnte möglicherweise der gebildete Ethanol sofort remetabolisieren ohne es zu emittieren. Nach einer langen Periode einer Überflutung konnte allerdings keine Emission mehr beobachtet werden, was auf eine vollständige Adaptation mit zunehmender Dauer schließen lässt. Als Reaktion auf den ausgelösten Stress können Isoprenoidemissionen ebenfalls kurzfristig nach einigen Tage an Überflutung zunehmen, fallen dann aber dann nach einer langen Periode zusammen mit der Photosynthese, Transpiration und stomatäre Leitfähigkeit deutlich ab.rnrnPflanzen Ontogenese ist anscheinend von Bedeutung für die Qualität und Quantität von VOC Emissionen. Aus diesem Grund wurden junge und erwachsene Blätter einiger gut charakterisierten Pflanzen Spezies aus dem Mittelmeerraum auf VOC Emissionen untersucht. Standard Emissionsfaktoren von Isopren waren niedriger in jungen Blättern als in erwachsene Blätter. Hingegen wurden höhere Monoterpen- und Sesquiterpenemissionen in jungen Blätter einiger Pflanzenspezies gefunden. Dieser Befund deutet auf eine potentielle Rolle dieser VOCs als Abwehrkomponenten gegen Pflanzenfresser oder Pathogene bei jungen Blätter hin. In einigen Fällen variierte auch die Zusammensetzung der Monoterpen- und Sesquiterpenspezies bei jungen und erwachsenen Blättern. Methanolemissionen waren, wie erwartet, höher in jungen Blättern als in ausgewachsenen Blättern, was mit der Demethylierung von Pectin bei der Zellwandreifung erklärt werden kann. Diese Befunde zu Änderungen der Emissionskapazität der Vegetation können für zukünftige Modellierungen herangezogen werden. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among abiotic stresses, high salinity stress is the most severe environmental stress. High salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even death. Salt tolerance in plants is a multifarious phenomenon involving a variety of changes at molecular, organelle, cellular, tissue as well as whole plant level. In addition, salt tolerant plants show a range of adaptations not only in morphological or structural features but also in metabolic and physiological processes that enable them to survive under extreme saline environments. The main objectives of my dissertation were understanding the main physiological and biomolecular features of plant responses to salinity in different genotypes of horticultural crops that are belonging to different families Solanaceae (tomato) and Cucurbitaceae (melon) and Brassicaceae (cabbage and radish). Several aspects of crop responses to salinity have been addressed with the final aim of combining elements of functional stress response in plants by using several ways for the assessment of plant stress perception that ranging from destructive measurements (eg. leaf area, relative growth rate, leaf area index, and total plant fresh and dry weight), to physiological determinations (eg. stomatal conductance, leaf gas exchanges, water use efficiency, and leaf water relation), to the determination of metabolite accumulation in plant tissue (eg. Proline and protein) as well as evaluation the role of enzymatic antioxidant capacity assay in scavenging reactive oxygen species that have been generated under salinized condition, and finally assessing the gene induction and up-down regulation upon salinization (eg. SOS pathway).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durum wheat is the second most important wheat species worldwide and the most important crop in several Mediterranean countries including Italy. Durum wheat is primarily grown under rainfed conditions where episodes of drought and heat stress are major factors limiting grain yield. The research presented in this thesis aimed at the identification of traits and genes that underlie root system architecture (RSA) and tolerance to heat stress in durum wheat, in order to eventually contribute to the genetic improvement of this species. In the first two experiments we aimed at the identification of QTLs for root trait architecture at the seedling level by studying a bi-parental population of 176 recombinant inbred lines (from the cross Meridiano x Claudio) and a collection of 183 durum elite accessions. Forty-eight novel QTLs for RSA traits were identified in each of the two experiments, by means of linkage- and association mapping-based QTL analysis, respectively. Important QTLs controlling the angle of root growth in the seedling were identified. In a third experiment, we investigated the phenotypic variation of root anatomical traits by means of microscope-based analysis of root cross sections in 10 elite durum cultivars. The results showed the presence of sizeable genetic variation in aerenchyma-related traits, prompting for additional studies aimed at mapping the QTLs governing such variation and to test the role of aerenchyma in the adaptive response to abiotic stresses. In the fourth experiment, an association mapping experiment for cell membrane stability at the seedling stage (as a proxy trait for heat tolerance) was carried out by means of association mapping. A total of 34 QTLs (including five major ones), were detected. Our study provides information on QTLs for root architecture and heat tolerance which could potentially be considered in durum wheat breeding programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gli stress abiotici determinando modificazioni a livello fisiologico, biochimico e molecolare delle piante, costituiscono una delle principali limitazioni per la produzione agricola mondiale. Nel 2007 la FAO ha stimato come solamente il 3,5% della superficie mondiale non sia sottoposta a stress abiotici. Il modello agro-industriale degli ultimi cinquant'anni, oltre ad avere contribuito allo sviluppo economico dell'Europa, è stato anche causa di inquinamento di acqua, aria e suolo, mediante uno sfruttamento indiscriminato delle risorse naturali. L'arsenico in particolare, naturalmente presente nell'ambiente e rilasciato dalle attività antropiche, desta particolare preoccupazione a causa dell'ampia distribuzione come contaminante ambientale e per gli effetti di fitotossicità provocati. In tale contesto, la diffusione di sistemi agricoli a basso impatto rappresenta una importante risorsa per rispondere all'emergenza del cambiamento climatico che negli anni a venire sottoporrà una superficie agricola sempre maggiore a stress di natura abiotica. Nello studio condotto è stato utilizzato uno stabile modello di crescita in vitro per valutare l'efficacia di preparati ultra diluiti (PUD), che non contenendo molecole chimiche di sintesi ben si adattano a sistemi agricoli sostenibili, su semi di frumento preventivamente sottoposti a stress sub-letale da arsenico. Sono state quindi condotte valutazioni sia a livello morfometrico (germinazione, lunghezza di germogli e radici) che molecolare (espressione genica valutata mediante analisi microarray, con validazione tramite Real-Time PCR) arricchendo la letteratura esistente di interessanti risultati. In particolare è stato osservato come lo stress da arsenico, determini una minore vigoria di coleptile e radici e a livello molecolare induca l'attivazione di pathways metabolici per proteggere e difendere le cellule vegetali dai danni derivanti dallo stress; mentre il PUD in esame (As 45x), nel sistema stressato ha indotto un recupero nella vigoria di germoglio e radici e livelli di espressione genica simili a quelli riscontrati nel controllo suggerendo un effetto "riequilibrante" del metabolismo vegetale.