932 resultados para ATOMIC FORCE MISCROSCOPY
Resumo:
Wear behavior of coatings has usually been described in terms of mechanical properties such as hardness (H) and effective elastic modulus (E*). Alternatively, an energy approach appears as a promising analysis taking into account the influence of those properties. In a nanoindentation test, the dissipated energy depends not only on the hardness and elastic modulus, but also on the elastic recovery (W(e)). This work aims to establish a relation between plastic deformation energy (E(p)) during depth-sensing indentation method and the grooving resistance of coatings in nanoscratch tests. An energy dissipation coefficient (K(d)) was defined, calculated as the ratio of the plastic to the total deformation energy (E(p)/E(t)), which represents the energy dissipation of materials. Reactive depositions using titanium as the target and nitrogen and methane as reactive gases were obtained by triode magnetron sputtering, in order to assess wear and nanoindentation data. A topographical, chemical and microstructural characterization has been conducted using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), wave dispersion spectroscopy (WDS), scanning electron (SEM) and atomic force microscopy (AFM) techniques. Nanoscratch results showed that the groove depth was well correlated to the energy dissipation coefficient of the coatings. On the other hand, a reduction in the coefficient was found when the elastic recovery was increased. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
TiAlN films were deposited on AISI O1 tool steel using a triode magnetron sputtering system. The bias voltage effect on the composition, thickness, crystallography, microstructure, hardness and adhesion strength was investigated. The coatings thickness and elemental composition analyses were carried out using scanning electron microscopy (SEM) together with energy dispersive X-ray (EDS). The re-sputtering effect due to the high-energy ions bombardment on the film surface influenced the coatings thickness. The films crystallography was investigated using X-ray diffraction characterization. The X-ray diffraction (XRD) data show that TiAlN coatings were crystallized in the cubic NaCl B1 structure, with orientations in the {111}, {200} {220} and {311} crystallographic planes. The surface morphology (roughness and grain size) of TiAlN coatings was investigated by atomic force microscopy (AFM). By increasing the substrate bias voltage from -40 to -150 V, hardness decreased from 32 GPa to 19 GPa. Scratch tester was used for measuring the critical loads and for measuring the adhesion. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The influence of Sri in Fe(2)O(3) thin films is addressed. The presence of the tin ions decreases the Fe(2)O(3) particle sizes and surface roughness decreasing of the films` surface is observed as a consequence. X-ray diffraction and atomic force microscopy measurements together with literature results support this phenomenon to be related to the segregation of the additive onto the surface and consequently surface energy decrease, which constitutes the driving force for the microstructure modification, similarly to results previously obtained for powders with same compositions. The effect of the anions introduced in the system as counter-ions of the precursors is also discussed.
Resumo:
In this paper, the performance of bis-1, 2-(triethoxysilyl) ethane (BTSE) as a pre-treatment to protect the AA 2024-T3 against corrosion has been investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curves, and the scanning vibrating electrode technique (SVET). The microstructural and morphological characterizations were carried out via scanning electron microscopy and atomic force microscopy and the chemical composition evaluated using contact angle measurements and X-ray photoelectron spectroscopy (XPS). The electrochemical results showed that the additives improved the anticorrosion properties of the coating. The chemical characterization indicated that additives contribute to an increased degree of surface coverage, as well as to a more complete reticulation. The SVET results evidenced the self-healing abilities of Ce ions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the effect of cerium (IV) ammonium nitrate (CAN) addition on the polymerization of bis-[triethoxysilyl]ethane (BTSE) film applied on carbon steel was studied. The electrochemical characterization of the films was carried out in 0.1 mol L(-1) NaCl solution by open-circuit potential measurements, anodic and cathodic polarization curves and electrochemical impedance spectroscopy (EIS). Morphological and chemical characterization were performed by atomic force microscopy (AFM), contact angle measurements, infrared-spectroscopy, nuclear magnetic resonance and thermogravimetric analysis. The results have clearly shown the improvement on the protective properties of the Ce(4+) modified film as a consequence of the formation of a more uniform and densely reticulated silane film. A mechanism is proposed to explain the accelerating role of Ce(4+) ions on the cross-linking of the silane layer. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical behaviour of carbon steel coated with bis-[trimethoxysilylpropyl]amine (BTSPA) filled with silica nanoparticles in naturally aerated 0.1 mol L-1 NaCl solutions was evaluated. The coating was prepared by adding different concentrations of silica nanoparticles (100, 200, 300, 400 and 500 ppm) to the hydrolysis solution and then a second layer without silica nanoparticles was applied. The electrochemical behavior of the coated steel was evaluated by means of open-circuit potential (E-OC), electrochemical impedance spectroscopy (EIS) and polarization curves. Surface characterization was made by atomic force microscopy (AFM), and its hydrophobicity assessed by contact angle measurements. EIS diagrams have shown an improvement of the barrier properties of the silane layer with the silica addition, which was further improved on the bi-layer system. However, a dependence on the filler concentration was verified, and the best electrochemical response was obtained for samples modified with 300 ppm of silica nanoparticles. AFM images have shown a homogeneous distribution of the silica nanoparticles on the sample surface; however particles agglomeration was detected, which degraded the corrosion protection performance. The results were explained on the basis of the improvement of the barrier properties of the coating due to the filler addition and on the onset of defective regions on the more heavily filled coatings allowing easier electrolyte penetration. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Titanium oxide (TiO(2)) has been extensively applied in the medical area due to its proved biocompatibility with human cells [1]. This work presents the characterization of titanium oxide thin films as a potential dielectric to be applied in ion sensitive field-effect transistors. The films were obtained by rapid thermal oxidation and annealing (at 300, 600, 960 and 1200 degrees C) of thin titanium films of different thicknesses (5 nm, 10 nm and 20 nm) deposited by e-beam evaporation on silicon wafers. These films were analyzed as-deposited and after annealing in forming gas for 25 min by Ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy (RAMAN), Atomic Force Microscopy (AFM), Rutherford Backscattering Spectroscopy (RBS) and Ti-K edge X-ray Absorption Near Edge Structure (XANES). Thin film thickness, roughness, surface grain sizes, refractive indexes and oxygen concentration depend on the oxidation and annealing temperature. Structural characterization showed mainly presence of the crystalline rutile phase, however, other oxides such Ti(2)O(3), an interfacial SiO(2) layer between the dielectric and the substrate and the anatase crystalline phase of TiO(2) films were also identified. Electrical characteristics were obtained by means of I-V and C-V measured curves of Al/Si/TiO(x)/Al capacitors. These curves showed that the films had high dielectric constants between 12 and 33, interface charge density of about 10(10)/cm(2) and leakage current density between 1 and 10(-4) A/cm(2). Field-effect transistors were fabricated in order to analyze I(D) x V(DS) and log I(D) x Bias curves. Early voltage value of -1629 V, R(OUT) value of 215 M Omega and slope of 100 mV/dec were determined for the 20 nm TiO(x) film thermally treated at 960 degrees C. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Lipopeptides produced by Bacillus subtilis are known for their high antifungal activity. The aim of this paper is to show that at high concentration they can damage the surface ultra-structure of bacterial cells. A lipopeptide extract containing iturin and surfactin (5 mg mL-1) was prepared after isolation from B. subtilis (strain OG) by solid phase extraction. Analysis by atomic force microscope (AFM) showed that upon evaporation, lipopeptides form large aggregates (0.1-0.2 mu m2) on the substrates silicon and mica. When the same solution is incubated with fungi and bacteria and the system is allowed to evaporate, dramatic changes are observed on the cells. AFM micrographs show disintegration of the hyphae of Phomopsis phaseoli and the cell walls of Xanthomonas campestris and X. axonopodis. Collapses to fungal and bacterial cells may be a result of formation of pores triggered by micelles and lamellar structures, which are formed above the critical micelar concentration of lipopeptides. As observed for P. phaseoli, the process involves binding, solubilization, and formation of novel structures in which cell wall components are solubilized within lipopeptide vesicles. This is the first report presenting evidences that vesicles of uncharged and negatively charged lipopeptides can alter the morphology of gram-negative bacteria.
Resumo:
In this work we report the interaction effects of the local anesthetic dibucaine (DBC) with lipid patches in model membranes by Atomic Force Microscopy (AFM). Supported lipid bilayers (egg phosphatidylcholine, EPC and dimyristoylphosphatidylcholine, DMPQ were prepared by fusion of unilamellar vesicles on mica and imaged in aqueous media. The AFM images show irregularly distributed and sized EPC patches on mica. On the other hand DMPC formation presents extensive bilayer regions on top of which multibilayer patches are formed. In the presence of DBC we observed a progressive disruption of these patches, but for DMPC bilayers this process occurred more slowly than for EPC. In both cases, phase images show the formation of small structures on the bilayer surface suggesting an effect on the elastic properties of the bilayers when DBC is present. Dynamic surface tension and dilatational surface elasticity measurements of EPC and DMPC monolayers in the presence of DBC by the pendant drop technique were also performed, in order to elucidate these results. The curve of lipid monolayer elasticity versus DBC concentration, for both EPC and DMPC cases, shows a maximum for the surface elasticity modulus at the same concentration where we observed the disruption of the bilayer by AFM. Our results suggest that changes in the local curvature of the bilayer induced by DBC could explain the anesthetic action in membranes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, we describe the characterization of the complex [Fe(tpy-NH2)(2)](PF6)(2) (tpy-NH2 = bis[4`-(3-aminophenyl)-2, 2`:6`,2 ``-terpyridine]. The complex was oxidatively electropolymerized on glassy.-carbon electrodes in CH3CN/0.1 M tetraethylammonium perchlorate (TEAP) to generate polymer films that exhibit reversible oxidative electrochemical behavior in a wide potential range (0.0-1.6 V), as well as high conductivity and stability/durability. In situ spectrocyclic voltammetry of this modified electrode was carried out on a photodiode array spectrophotometer attached to a potentiostat, which provided UV-Vis absorption spectra of the redox species during the potential sweep. We determined charge transport parameters as a function of time and thickness of the modified electrode, and the results showed that poly-[[Fe(tpy-NH2)(2)](2+)](n) can be made to exhibit three regimes of charge transport behavior by manipulation of the film thickness and the experimental time-scale. Morphological characterization of the film was provided by atomic force microscopy. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Layer-by-layer (LbL) nanocomposite films from TiO(2) nanoparticles and tungsten-based oxides (WO(x)H(y)), as well as dip-coating films of TiO(2) nano particles, were prepared and investigated by electrochemical techniques under visible light beams, aiming to evaluate the lithium ion storage and chromogenic properties. Atomic force microscopy (AFM) images were obtained for morphological characterization of the Surface of the materials, which have similar roughness. Cyclic voltammetry and chronoamperometry measurements indicated high storage capacity of lithium ions in the LbL nanocomposite compared with the dip-coating film, which was attributed to the faster lithium ion diffusion rate within the self-assembled matrix. On the basis of the data obtained from galvanostatic intermittent titration technique (GITT), the values of lithium ion diffusion coefficient (D(Li)) for TiO(2)/WO(x)H(y) were larger compared with those for TiO(2). The rate of the coloration front in the matrices was investigated using a spectroelectrochemical method based oil GITT, allowing the determination of the ""optical"" diffusion coefficient (D(op)) as a function of the amount of lithium ions previously inserted into the matrices. The Values of D(Li) and D(op) suggested the existence of phases with distinct contribution to lithium ion diffusion rates and electrochromic efficiency. Moreover, these results aided a better understanding of the temporal change of current density and absorbance during the ionic electro-insertion, which is important for the possible application of these materials in lithium ion batteries and electrohromic devices.
Resumo:
One major challenge for the widespread application of direct methanol fuel cells (DMFCs) is to decrease the amount of platinum used in the electrodes, which has motivated a search for novel electrodes containing platinum nanoparticles. In this study, platinum nanoparticles were electrodeposited on layer-by-layer (LbL) films from TiO(2) and poly(vinyl sulfonic) (PVS), by immersing the films into a H(2)PtCl(6) solution and applying a 100 mu A current during different electrode position times. Scanning tunnel microscopy (STM) and atomic force microscopy (AFM) images showed increased platinum particle size and electrode roughness for increasing electrodeposition times. The potentiodynamic profile of the electrodes indicated that oxygen-like species in 0.5 mol L(-1) H(2)SO(4) were formed at less positive potentials for the smallest platinum particles. Electrochemical impedance spectroscopy measurements confirmed the high reactivity for the water dissociation and the large amount of oxygen-like species adsorbed on the smallest platinum nanoparticles. This high oxophilicity of the smallest nanoparticles was responsible for the electrocatalytic activity of Pt-TiO(2)/PVS systems for methanol electrooxidation, according to the Langmuir-Hinshelwood bifunctional mechanism. Significantly, the approach used here combining platinum electrodeposition and LbL matrices allows one to both control the particle size and optimize methanol electrooxidation, being therefore promising for producing membrane-electrode assemblies of DMFCs.
Resumo:
This work reports the first ultrastructural investigation into the degradation process that starch granules isolated from bananas (cv. Nanicao) undergo during ripening. Starch granules from green bananas had a smooth surface, while granules from ripe bananas were more elongated with parallel striations, as revealed by CSLM and SEM. AFM images revealed that the first layer covering the granule surface is composed of a hard material and, as degradation proceeds, hard and soft regions seem to be repeated at regular intervals. WAXD patterns of banana starches were C-type, and the crystalline index was reduced during ripening. The B-/A-type ratio was increased, indicating the preferential degradation of the A-type allomorph. The branch-chain length distribution showed predominantly short chains of amylopectin (A and B1-chain). The fa/fb ratio was reduced during degradation, while amylose content was increased. The results allowed a detailed understanding of the changes that starch granules undergo during banana ripening. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The starch content of unripe mango Keitt is around 7% (FW), and it is converted to soluble sugars during the ripening of the detached fruit. Despite the importance of starch-to-soluble sugar metabolism for mango quality, little literature is found on this subject and none concerning the physical aspects of starch degradation. This manuscript presents some changes in the physical aspects of the starch granule during ripening, as analyzed by light microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). According to the analysis, unripe Keitt-mango-starch being spherical in shape and measuring around 15,mu m, has A-type X-ray diffraction pattern with a degree of crystallinity around 21% with slight changes after 8 days of ripening. AFM images of the surface of the granules showed ultra microstructures, which are in agreement with a blocklet-based organization of the granules. The AFM-contrast image of growing layers covering the granule showed fibril-like structures, having 20 nm in diameter, transversally connecting the layer to the granule. The appearance of the partially degraded granules and the pattern of degradation were similar to those observed as a result of amylase activity, suggesting a hydrolytic pathway for the degradation of starch from mango cultivar Keitt. These results provide clues to a better understanding of starch degradation in fruits.
Resumo:
Formation of stable thin films of mixed xyloglucan (XG) and alginate (ALG) onto Si/SiO2 wafers was achieved under pH 11.6, 50 mM CaCl2, and at 70 degrees C. XG-ALG films presented mean thickness of (16 +/- 2) nun and globules rich surface, as evidenced by means of ellipsometry and atomic force microscopy (AFM), respectively. The adsorption of two glucose/mannose-binding seed (Canavalia ensiformis and Dioclea altissima) lectins, coded here as ConA and DAlt, onto XG-ALG surfaces took place under pH 5. Under this condition both lectins present positive net charge. ConA and DAIt adsorbed irreversibly onto XG-ALG forming homogenous monolayers similar to(4 +/- 1)nm thick. Lectins adsorption was mainly driven by electrostatic interaction between lectins positively charged residues and carboxylated (negatively charged) ALG groups. Adhesion of four serotypes of dengue virus, DENV (1-4), particles to XG-ALG surfaces were observed by ellipsometry and AFM. The attachment of dengue particles onto XG-ALG films might be mediated by (i) H bonding between E protein (located at virus particle surface) polar residues and hydroxyl groups present on XG-ALG surfaces and (ii) electrostatic interaction between E protein positively charged residues and ALG carboxylic groups. DENV-4 serotype presented the weakest adsorption onto XG-ALG surfaces, indicating that E protein on DENV-4 surface presents net charge (amino acid sequence) different from E proteins of other serotypes. All four DENV particles serotypes adsorbed similarly onto lectin films adsorbed. Nevertheless, the addition of 0.005 mol/L of mannose prevented dengue particles from adsorbing onto lectin films. XG-ALG and lectin layers serve as potential materials for the development of diagnostic methods for dengue. (c) 2008 Elsevier B.V. All rights reserved.