286 resultados para ARRHYTHMIAS
Resumo:
The stroke, cause of morbidity and mortality, has been associated with imbalance in the neural control of the heart, which contributes to the decrease in heart rate variability (HRV) and a prognostic factor for cardiacevents and arrhythmias. The aim of this study was to in investigate the autonomic modulation of heart rate of men suffering from lesions stroke in chronicphase. Eight menaged 58.62 ± 2.88 years, 27.41 ± 5.33 kg/m2of bodymass índex, with paresis for at least six months were studied. Heart rate (HR) and RR intervals (iR-R) were recorded at rest in supine position for 10 minutes. Geometric índices of the Poincaré plot were calculated: SD1, associatedwith vagal activity; SD2, associated with global activity but sympathetic predominance, and the relationship of both (SD1/SD2). Geometric index values in the sample: SD1 = 20,54 ± 9,90ms; SD2 = 36,80 ± 30,61ms; SD1/SD2 = 0,49 ± 0,04. The reference values from literature for healthy subjects are: SD1 = 19.6 ± 9.4ms e 22.8 ± 16.1 ms; SD2 = 43.2 ± 17.7 ms e 56.3 ± 12.3 ms; SD1/SD2 = 0.49 ± 0.21ms. Men in chronic phase of stroke haven't autonomic dysfunction analyzed by nonlinear method – Poincaré geometricíndices.
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Hyperkalemia is a common electrolyte imbalance in cats with obstructive feline lower urinary tract disease (FLUTD). The effects of serum potassium elevation in heart rhythm are serious and potentially lethal. The clinical manifestations reflect changes in the excitability of the cell membrane. Increased potassium levels lead to a reduction of the resting membrane potential of heart muscle cells, making them less excitable and resulting in cardiac arrhythmias. The sinoventricular rhythm with atrial arrest is among the types of arrhythmias caused by hyperkalemia. The purpose of this report was to highlight the importance of electrocardiographic monitoring for the early detection of potentially lethal arrhythmias in cats with obstructive FLUTD. We hereby describe the occurrence of three cases treated at the Small Animal Clinic of FMVZ/Unesp, Botucatu Campus.
Resumo:
The electrocardiogram (ECG) is an important tool used in the diagnosis of cardiac arrhythmias, since it gives the graphic representation of depolarization and repolarization processes of the cardiac muscle. This study allows recording the electrical activity of myocardial cells and the underlying differences in electric potential: the magnitude of this difference is measured in millivolts (mV), and its duration is measured in seconds. The ECG is indicated when an irregular rhythm is detected during physical examination, such as bradycardias, tachycardias or arrhythmias that are not secondary to breathing, in animals with a history of syncope or weakness, for monitoring the effectiveness of antiarrhythmic therapy, in cases of putative pleural or pericardial effusion, and also in systemic diseases that lead to arrhythmia. For a reliable assessment, the ECG must be evaluated in conjunction with findings from the physical examination and clinical signs of each patient.
Resumo:
Purpose: To assess the relationship between the presence of pets in homes of epilepsy patients and the occurrence of sudden unexpected death in epilepsy (SUDEP). Methods: Parents or relatives of SUDEP patients collected over a ten-year period (2000-2009) in a large epilepsy unit were asked if the patient lived together with any domestic pet at the time of death or not. Patients who did not experience SUDEP served as controls. Results and conclusions: Eleven out of the 1092 included patients (1%) experienced SUDEP, all with refractory symptomatic epilepsy, but none of them had pets in their homes at the time of death. In contrast, the frequency of pet-ownership in the control group (n = 1081) was 61%. According to previous studies there are some indications that human health is directly related to companionship with animals in a way that domestic animals prevent illness and facilitate recovery of patients. Companion animals can buffer reactivity against acute stress, diminish stress perception and improve physical health. These factors may reduce cardiac arrhythmias and seizure frequency, factors related to SUDEP. Companion animals may have a positive effect on well-being, thus irnproving epilepsy outcome. (c) 2012 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: There are no available statistical data about sudden cardiac death in Brazil. Therefore, this study has been conducted to evaluate the incidence of sudden cardiac death in our population and its implications. Methods: The research methodology was based on Thurstone's Law of Comparative Judgment, whose premise is that the more an A stimulus differs from a B stimulus, the greater will be the number of people who will perceive this difference. This technique allows an estimation of actual occurrences from subjective perceptions, when compared to official statistics. Data were collected through telephone interviews conducted with Primary and Secondary Care physicians of the Public Health Service in the Metropolitan Area of Sao Paulo (MASP). Results: In the period from October 19, 2009, to October 28, 2009, 196 interviews were conducted. The incidence of 21,270 cases of sudden cardiac death per year was estimated by linear regression analysis of the physicians responses and data from the Mortality Information System of the Brazilian Ministry of Health, with the following correlation and determination coefficients: r = 0.98 and r2= 0.95 (95% confidence interval 0.81.0, P < 0.05). The lack of waiting list for specialized care and socioadministrative problems were considered the main barriers to tertiary care access. Conclusions: The incidence of sudden cardiac death in the MASP is high, and it was estimated as being higher than all other causes of deaths; the extrapolation technique based on the physicians perceptions was validated; and the most important bureaucratic barriers to patient referral to tertiary care have been identified. (PACE 2012; 35:13261331)
Resumo:
Background: Premature ventricular and supraventricular complexes (PVC and PsVC) are frequent and often symptomatic. The magnesium (Mg) ion plays a role in the physiology of cell membranes and cardiac rhythm. Objective: We evaluated whether the administration of Mg Pidolate (MgP) in patients with PVC and PsVC is superior to placebo (P) in improving symptoms and arrhythmia frequency. Methods: Randomized double-blind study with 60 consecutive symptomatic patients with more than 240 PVC or PsVC/h on 24-hour Holter monitoring who were selected to receive placebo or MgP. To evaluate symptom improvement, a categorical and a specific questionnaire for symptoms related to PVC and PsVC was made. Improvement in premature complex density (PCD) per hour was considered significant if percentage reduction was >= 70% after treatment. The dose of MgP was 3.0 g/day for 30 days, equivalent to 260mg of Mg element. None of the patients had structural heart disease or renal failure. Results: Of the 60 patients, 33 were female (55%). Ages ranged from 16 to 70 years old. In the MgP group, 76.6% of patients had a PCD reduction >70%, 10% of them >50% and only 13.4% <50%. In the P group, 40% showed slight improvement, <30%, in the premature complexes frequency (p < 0.001). Symptom improvement was achieved in 93.3% of patients in the MgP group, compared with only 16.7% in the P group (p < 0.001). Conclusion: Oral Mg supplementation decreases PCD, resulting in symptom improvement. (Arq Bras Cardiol 2012;98(6):480-487)
Resumo:
Adenosine is the first drug of choice in the treatment of supraventricular arrhythmias. While the effects of adenosine on sympathetic nerve activity (SNA) have been investigated, no information is available on the effects on cardiac vagal nerve activity (VNA). We assessed in rats the responses of cardiac VNA, SNA and cardiovascular variables to intravenous bolus administration of adenosine. In 34 urethane-anaesthetized rats, cardiac VNA or cervical preganglionic sympathetic fibres were recorded together with ECG, arterial pressure and ventilation, before and after administration of three doses of adenosine (100, 500 and 1000 mu g kg-1). The effects of adenosine were also assessed in isolated perfused hearts (n= 5). Adenosine induced marked bradycardia and hypotension, associated with a significant dose-dependent increase in VNA (+204 +/- 56%, P < 0.01; +275 +/- 120%, P < 0.01; and +372 +/- 78%, P < 0.01, for the three doses, respectively; n= 7). Muscarinic blockade by atropine (5 mg kg-1, i.v.) significantly blunted the adenosine-induced bradycardia (-56.0 +/- 4.5%, P < 0.05; -86.2 +/- 10.5%, P < 0.01; and -34.3 +/- 9.7%, P < 0.01, respectively). Likewise, adenosine-induced bradycardia was markedly less in isolated heart preparations. Previous barodenervation did not modify the effects of adenosine on VNA. On the SNA side, adenosine administration was associated with a dose-dependent biphasic response, including overactivation in the first few seconds followed by a later profound SNA reduction. Earliest sympathetic activation was abolished by barodenervation, while subsequent sympathetic withdrawal was affected neither by baro- nor by chemodenervation. This is the first demonstration that acute adenosine is able to activate cardiac VNA, possibly through a central action. This increase in vagal outflow could make an important contribution to the antiarrhythmic action of this substance.
Resumo:
FUNDAMENTO: As extrassístoles ventriculares e supraventriculares (EV e ESSV) são frequentes e muitas vezes sintomáticas. O íon magnésio (Mg) desempenha um papel importante na fisiologia do potencial de ação transmembrana celular e do ritmo cardíaco. OBJETIVO: Avaliar se a administração do pidolato de magnésio (PMg) em pacientes com EV e ESSV tem desempenho superior ao uso do placebo (P) na melhora dos sintomas e densidade das extrassístoles (DES). MÉTODOS: Estudo duplo-cego, randomizado, com 60 pacientes sintomáticos consecutivos, com mais de 240/EV ou ESSV ao Holter de 24 horas e selecionados para receber P ou PMg. Para avaliar a melhora da sintomatologia, foi feito um questionário categórico e específico de sintomas relacionados às extrassístoles. Após o tratamento, foi considerada significante uma redução de mais de 70% na DES por hora. A dose do PMg foi de 3,0 g/dia por 30 dias, equivalente a 260 mg do elemento Mg. Nenhum paciente tinha cardiopatia estrutural ou insuficiência renal. RESULTADOS: Dos 60 pacientes estudados, 33 eram do sexo feminino (55%). A faixa etária variou de 16 a 70 anos. No grupo PMg, 76,6% dos pacientes tiveram redução maior que 70%, 10% deles maior que 50% e somente 13,4% tiveram redução menor que 50% na DES. No grupo P, 40% dos pacientes tiveram melhora de apenas 30% na frequência de extrassístoles (p < 0,001). A melhora dos sintomas foi alcançada em 93,3% dos pacientes do grupo PMg, comparada com somente 16,7% do grupo P (p < 0,001). CONCLUSÃO: A suplementação de Mg via oral reduziu a DES, resultando em melhora dos sintomas.
Resumo:
Aims: We aimed to quantify the release of bio-markers of myocardial damage in relation to direct intramyocardial injections of genes and stem cells in patients with severe coronary artery disease. Methods and Results: We studied 71 patients with “no-option” coronary artery disease. Patients had, via the percutaneous transluminal route, a total of 11±1 (mean ± SD) intramyocardial injections of vascular endothelial growth factor genes (n=56) or mesenchymal stromal cells (n=15). Injections were guided to an ischemic area by electromechanical mapping, using the NOGA™/Myostar™ catheter system. ECG was monitored continuously until discharge. Plasma CKMB (upper normal laboratory limit=5 μg/l) was 2 μg/l (2-3) at baseline; increased to 6 (5-9) after 8 hours (p < 0.0001) and normalized to 4 (3-5) after 24 hours. A total of 8 patients (17%), receiving a volume of 0.3 ml per injection, had CKMB rises exceeding 3 times the upper limit, whereas no patient in the group receiving 0.2 ml had a more than two fold CKMB increase. No patient developed new ECG changes. There were no clinically important ventricular arrhythmias and no death. Conclusion: Direct Intramyocardial injections of stem cells or genes lead to measurable release of cardiac bio-markers, which was related to the injected volume.
Resumo:
Sudden cardiac death due to ventricular arrhythmia is one of the leading causes of mortality in the world. In the last decades, it has proven that anti-arrhythmic drugs, which prolong the refractory period by means of prolongation of the cardiac action potential duration (APD), play a good role in preventing of relevant human arrhythmias. However, it has long been observed that the “class III antiarrhythmic effect” diminish at faster heart rates and that this phenomenon represent a big weakness, since it is the precise situation when arrhythmias are most prone to occur. It is well known that mathematical modeling is a useful tool for investigating cardiac cell behavior. In the last 60 years, a multitude of cardiac models has been created; from the pioneering work of Hodgkin and Huxley (1952), who first described the ionic currents of the squid giant axon quantitatively, mathematical modeling has made great strides. The O’Hara model, that I employed in this research work, is one of the modern computational models of ventricular myocyte, a new generation began in 1991 with ventricular cell model by Noble et al. Successful of these models is that you can generate novel predictions, suggest experiments and provide a quantitative understanding of underlying mechanism. Obviously, the drawback is that they remain simple models, they don’t represent the real system. The overall goal of this research is to give an additional tool, through mathematical modeling, to understand the behavior of the main ionic currents involved during the action potential (AP), especially underlining the differences between slower and faster heart rates. In particular to evaluate the rate-dependence role on the action potential duration, to implement a new method for interpreting ionic currents behavior after a perturbation effect and to verify the validity of the work proposed by Antonio Zaza using an injected current as a perturbing effect.
Resumo:
Ventricular cells are immersed in a bath of electrolytes and these ions are essential for a healthy heart and a regular rhythm. Maintaining physiological concentration of them is fundamental for reducing arrhythmias and risk of sudden cardiac death, especially in haemodialysis patients and in the heart diseases treatments. Models of electrically activity of the heart based on mathematical formulation are a part of the efforts to improve the understanding and prediction of heart behaviour. Modern models incorporate the extensive and ever increasing amounts of experimental data in incorporating biophysically detailed mechanisms to allow the detailed study of molecular and subcellular mechanisms of heart disease. The goal of this project was to simulate the effects of changes in potassium and calcium concentrations in the extracellular space between experimental data and and a description incorpored into two modern biophysically detailed models (Grandi et al. Model; O’Hara Rudy Model). Moreover the task was to analyze the changes in the ventricular electrical activity, in particular by studying the modifications on the simulated electrocardiographic signal. We used the cellular information obtained by the heart models in order to build a 1D tissue description. The fibre is composed by 165 cells, it is divided in four groups to differentiate the cell types that compound human ventricular tissue. The main results are the following: Grandi et al. (GBP) model is not even able to reproduce the correct action potential profile in hyperkalemia. Data from hospitalized patients indicates that the action potential duration (APD) should be shorter than physiological state but in this model we have the opposite. From the potassium point of view the results obtained by using O’Hara model (ORD) are in agreement with experimental data for the single cell action potential in hypokalemia and hyperkalemia, most of the currents follow the data from literature. In the 1D simulations we were able to reproduce ECGs signal in most the potassium concentrations we selected for this study and we collected data that can help physician in understanding what happens in ventricular cells during electrolyte disorder. However the model fails in the conduction of the stimulus under hyperkalemic conditions. The model emphasized the ECG modifications when the K+ is slightly more than physiological value. In the calcium setting using the ORD model we found an APD shortening in hypocalcaemia and an APD lengthening in hypercalcaemia, i.e. the opposite to experimental observation. This wrong behaviour is kept in one dimensional simulations bringing a longer QT interval in the ECG under higher [Ca2+]o conditions and vice versa. In conclusion it has highlighted that the actual ventricular models present in literature, even if they are useful in the original form, they need an improvement in the sensitivity of these two important electrolytes. We suggest an use of the GBP model with modifications introduced by Carro et al. who understood that the failure of this model is related to the Shannon et al. model (a rabbit model) from which the GBP model was built. The ORD model should be modified in the Ca2+ - dependent IcaL and in the influence of the Iks in the action potential for letting it him produce a correct action potential under different calcium concentrations. In the 1D tissue maybe a heterogeneity setting of intra and extracellular conductances for the different cell types should improve a reproduction of the ECG signal.
A Phase Space Box-counting based Method for Arrhythmia Prediction from Electrocardiogram Time Series
Resumo:
Arrhythmia is one kind of cardiovascular diseases that give rise to the number of deaths and potentially yields immedicable danger. Arrhythmia is a life threatening condition originating from disorganized propagation of electrical signals in heart resulting in desynchronization among different chambers of the heart. Fundamentally, the synchronization process means that the phase relationship of electrical activities between the chambers remains coherent, maintaining a constant phase difference over time. If desynchronization occurs due to arrhythmia, the coherent phase relationship breaks down resulting in chaotic rhythm affecting the regular pumping mechanism of heart. This phenomenon was explored by using the phase space reconstruction technique which is a standard analysis technique of time series data generated from nonlinear dynamical system. In this project a novel index is presented for predicting the onset of ventricular arrhythmias. Analysis of continuously captured long-term ECG data recordings was conducted up to the onset of arrhythmia by the phase space reconstruction method, obtaining 2-dimensional images, analysed by the box counting method. The method was tested using the ECG data set of three different kinds including normal (NR), Ventricular Tachycardia (VT), Ventricular Fibrillation (VF), extracted from the Physionet ECG database. Statistical measures like mean (μ), standard deviation (σ) and coefficient of variation (σ/μ) for the box-counting in phase space diagrams are derived for a sliding window of 10 beats of ECG signal. From the results of these statistical analyses, a threshold was derived as an upper bound of Coefficient of Variation (CV) for box-counting of ECG phase portraits which is capable of reliably predicting the impeding arrhythmia long before its actual occurrence. As future work of research, it was planned to validate this prediction tool over a wider population of patients affected by different kind of arrhythmia, like atrial fibrillation, bundle and brunch block, and set different thresholds for them, in order to confirm its clinical applicability.