902 resultados para ARCH-in-mean


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The multidecadal variability of El Niño–Southern Oscillation (ENSO)–South Asian monsoon relationship is elucidated in a 1000 year control simulation of a coupled general circulation model. The results indicate that the Atlantic Multidecadal Oscillation (AMO), resulting from the natural fluctuation of the Atlantic Meridional Overturning Circulation (AMOC), plays an important role in modulating the multidecadal variation of the ENSO-monsoon relationship. The sea surface temperature anomalies associated with the AMO induce not only significant climate impact in the Atlantic but also the coupled feedbacks in the tropical Pacific regions. The remote responses in the Pacific Ocean to a positive phase of the AMO which is resulted from enhanced AMOC in the model simulation and are characterized by statistically significant warming in the North Pacific and in the western tropical Pacific, a relaxation of tropical easterly trades in the central and eastern tropical Pacific, and a deeper thermocline in the eastern tropical Pacific. These changes in mean states lead to a reduction of ENSO variability and therefore a weakening of the ENSO-monsoon relationship. This study suggests a nonlocal mechanism for the low-frequency fluctuation of the ENSO-monsoon relationship, although the AMO explains only a fraction of the ENSO–South Asian monsoon variation on decadal-multidecadal timescale. Given the multidecadal variation of the AMOC and therefore of the AMO exhibit decadal predictability, this study highlights the possibility that a part of the change of climate variability in the Pacific Ocean and its teleconnection may be predictable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The importance of temperature in the determination of the yield of an annual crop (groundnut; Arachis hypogaea L. in India) was assessed. Simulations from a regional climate model (PRECIS) were used with a crop model (GLAM) to examine crop growth under simulated current (1961-1990) and future (2071-2100) climates. Two processes were examined: the response of crop duration to mean temperature and the response of seed-set to extremes of temperature. The relative importance of, and interaction between, these two processes was examined for a number of genotypic characteristics, which were represented by using different values of crop model parameters derived from experiments. The impact of mean and extreme temperatures varied geographically, and depended upon the simulated genotypic properties. High temperature stress was not a major determinant of simulated yields in the current climate, but affected the mean and variability of yield under climate change in two regions which had contrasting statistics of daily maximum temperature. Changes in mean temperature had a similar impact on mean yield to that of high temperature stress in some locations and its effects were more widespread. Where the optimal temperature for development was exceeded, the resulting increase in duration in some simulations fully mitigated the negative impacts of extreme temperatures when sufficient water was available for the extended growing period. For some simulations the reduction in mean yield between the current and future climates was as large as 70%, indicating the importance of genotypic adaptation to changes in both means and extremes of temperature under climate change. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Advancing maturity of forage maize is associated with increases in the proportion of dry matter (DM) and starch and decreases in the proportions of structural carbohydrates in the ensiled crop. Three maize silages (286 (low, L), 329 (medium, M) and 379 (high, H) g DM per kg fresh weight) plus a concentrate formulated to give isonitrogenous intakes were offered to Holstein-Friesian steers fitted with a cannula in the dorsal sac of the rumen and a 'T' piece cannula in the proximal duodenum in an experiment with a cross-over design that allowed four collection periods. Nutrient flow to the duodenum was estimated using chromium-EDTA. Steers consumed approximately 0(.)6 kg DM per day less of diet L compared with the other two diets (P=0(.)026), resulting in less DM being digested (P=0(.)005) but digestibility did not differ between diets. Similar results were obtained for organic matter. There were no differences between diets in the intake or digestibility of neutral-detergent fibre. Intake, duodenal flow and faecal output of starch were greater for steers offered diets M and H compared with those given diet L (P < 0(.)05). In all diets rumen digestion contributed to over 90% of total digestion of starch, although rumen digestibility declined significantly with advancing maize maturity (P=0(.)002). Molar proportions of acetic acid were higher in diet H (P < 0(.)05) whilst proportions of propionic acid and n-butyric acid were higher in diets M and L. There were no significant differences between diets in mean rumen pH or ammonia concentrations. Mean circulating concentrations of insulin were higher (P=0(.)009) in cattle given diets L and M compared with diet H. There were no differences between diets in the mean circulating concentration of growth hormone, or the frequency, amplitude and duration of growth hormone pulses, or the mean circulating concentrations of IGF-1. Changes in forage composition that accompany advancing maize maturity affect overall silage digestion and circulating concentrations of insulin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pigeonpea is grown in wide range of cropping systems and environments, both in East Africa and internationally. An important feature of adaptation to these diverse systems and environments is the timing of flowering and maturity. Most traditional cultivars grown in Tanzania are medium to late flowering types (> 150 days), although extra-early flowering cultivars are now available. The aim of the present investigation was to measure biomass (BY) and seed (SY) yield of a set of phenologically diverse cultivars to determine their adaptation to contrasting environments in Tanzania. Ten cultivars, from extra-early (60 days) to late (> 180 days) flowering, were planted at six locations varying in mean temperature, photoperiod and rainfall. Days to flowering (DTF) and maturity, and above-ground BY and SY at maturity, were measured. A stress index (ETr:ETm ratio, 100 = no stress) was computed for each site. Rainfall and the stress index at the different sites varied from 322 to 1297 mm and 57 to 89, respectively. Among cultivars, DTF varied from 55 to 320 days, the stress index from 3 to 98, BY from 700 to 25,000 kg ha(-1), and SY from 0 to 4000 kg ha(-1). The highest yielding environment was at Selian, where mean temperatures were favourable (19 degrees C) and no stress occurred. At all sites there was an optimum DTF, which for SY varied from < 100 to 150 days. The best adapted cultivars were ICP 7035, ICPL 90094, Kat 50 and QP37, which were all medium flowering (c. 150 day) types. Extra-early cultivars such as ICPL 86005 also showed considerable potential, especially in short-season environments. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO2, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO2. Results indicate that SST and CO2 change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO2 change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO2 and those in observations in the mid-1970s implies that the increase of greenhouse gas concentration in the atmosphere, and the resulting changes in the stratosphere, might have played an important role in the multidecadal change of interannual NAO variability and its associated climate anomalies during the late twentieth century. The weak change in mean westerlies in the troposphere in response to CO2 change implies that enhanced and eastward extended mid-latitude westerlies in the troposphere might not be a necessary condition for the poleward and eastward shift of the NAO action centres in the mid-1970s.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A time-dependent climate-change experiment with a coupled ocean–atmosphere general circulation model has been used to study changes in the occurrence of drought in summer in southern Europe and central North America. In both regions, precipitation and soil moisture are reduced in a climate of greater atmospheric carbon dioxide. A detailed investigation of the hydrology of the model shows that the drying of the soil comes about through an increase in evaporation in winter and spring, caused by higher temperatures and reduced snow cover, and a decrease in the net input of water in summer. Evaporation is reduced in summer because of the drier soil, but the reduction in precipitation is larger. Three extreme statistics are used to define drought, namely the frequency of low summer precipitation, the occurrence of long dry spells, and the probability of dry soil. The last of these is arguably of the greatest practical importance, but since it is based on soil moisture, of which there are very few observations, the authors’ simulation of it has the least confidence. Furthermore, long time series for daily observed precipitation are not readily available from a sufficient number of stations to enable a thorough evaluation of the model simulation, especially for the frequency of long dry spells, and this increases the systematic uncertainty of the model predictions. All three drought statistics show marked increases owing to the sensitivity of extreme statistics to changes in their distributions. However, the greater likelihood of long dry spells is caused by a tendency in the character of daily rainfall toward fewer events, rather than by the reduction in mean precipitation. The results should not be taken as firm predictions because extreme statistics for small regions cannot be calculated reliably from the output of the current generation of GCMs, but they point to the possibility of large increases in the severity of drought conditions as a consequence of climate change caused by increased CO2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Instrumental observations1, 2 and reconstructions3, 4 of global and hemispheric temperature evolution reveal a pronounced warming during the past 150 years. One expression of this warming is the observed increase in the occurrence of heatwaves5, 6. Conceptually this increase is understood as a shift of the statistical distribution towards warmer temperatures, while changes in the width of the distribution are often considered small7. Here we show that this framework fails to explain the record-breaking central European summer temperatures in 2003, although it is consistent with observations from previous years. We find that an event like that of summer 2003 is statistically extremely unlikely, even when the observed warming is taken into account. We propose that a regime with an increased variability of temperatures (in addition to increases in mean temperature) may be able to account for summer 2003. To test this proposal, we simulate possible future European climate with a regional climate model in a scenario with increased atmospheric greenhouse-gas concentrations, and find that temperature variability increases by up to 100%, with maximum changes in central and eastern Europe.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Climate change is a serious threat to crop productivity in regions that are already food insecure. We assessed the projected impacts of climate change on the yield of eight major crops in Africa and South Asia using a systematic review and meta-analysis of data in 52 original publications from an initial screen of 1144 studies. Here we show that the projected mean change in yield of all crops is − 8% by the 2050s in both regions. Across Africa, mean yield changes of − 17% (wheat), − 5% (maize), − 15% (sorghum) and − 10% (millet) and across South Asia of − 16% (maize) and − 11% (sorghum) were estimated. No mean change in yield was detected for rice. The limited number of studies identified for cassava, sugarcane and yams precluded any opportunity to conduct a meta-analysis for these crops. Variation about the projected mean yield change for all crops was smaller in studies that used an ensemble of > 3 climate (GCM) models. Conversely, complex simulation studies that used biophysical crop models showed the greatest variation in mean yield changes. Evidence of crop yield impact in Africa and South Asia is robust for wheat, maize, sorghum and millet, and either inconclusive, absent or contradictory for rice, cassava and sugarcane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Secular trends of daily precipitation characteristics are considered in the transient climate change experiment with a coupled atmosphere-ocean general circulation model ECHAM4/OPYC3 for 1900-2099. The climate forcing is due to increasing concentrations of the greenhouse gases in the atmosphere. Mean daily precipitation, precipitation intensity, probability of wet days and parameters of the gamma distribution are analyzed. Particular attention is paid to the changes of heavy precipitation, Analysis of the annual mean precipitation trends for 1900-1999 revealed general agreement with observations with significant positive trends in mean precipitation over continental areas. In the 2000-2099 period precipitation trend patterns followed the tendency obtained for 1900-1999 but with significantly increased magnitudes. Unlike the annual mean precipitation trends for which negative values were found for some continental areas, the mean precipitation intensity and scale parameter of the fitted gamma distribution increased over all land territories . Negative trends in the number of wet days were found over most of the land areas except high latitudes in the Northern Hemisphere. The shape parameter of the gamma distribution in general revealed a slight negative trend in the areas of the precipitation increase. Investigation of daily precipitation revealed an unproportional increase of heavy precipitation events for the land areas including local maxima in Europe and the eastern United States.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Winter cyclone activity over the Northern Hemisphere is investigated in an ECHAM4/OPYC3 greenhouse gas scenario simulation. The goal of this investigation is to identify changes in cyclone activity associated with increasing concentrations. To this aim, two 50-year time periods are analysed, one representing present day climate conditions and the other a perturbed climate when CO2 concentrations exceed twice the present concentrations. Cyclone activity is assessed using an automatic algorithm, which identifies and tracks cyclones based on sea level pressure fields. The algorithm detects not only large and long living cyclones over the main ocean basins, but also their smaller counterparts in secondary storm track regions like the Mediterranean Basin. For the present climate, results show a good agreement with NCEP-reanalysis, provided that the spectral and time resolutions of the reanalysis are reduced to those available for the model. Several prominent changes in cyclone activity are observed for the scenario period in comparison to the present day climate, especially over the main ocean basins. A significant decrease of overall cyclone track density is found between 35 and 55 degrees North, together with a small increase polewards. These changes result from two different signals for deep and medium cyclones: for deep cyclones (core pressure below 990 hPa) there is a poleward shift in the greenhouse gas scenario, while for medium cyclones (core pressure between 990 and 1010 hPa) a general decrease in cyclone counts is found. The same kind of changes (a shift for intense cyclones and an overall decrease for the weaker ones) are detected when distinguishing cyclones from their intensity, quantified in terms of ∇2p. Thus, the simulated changes can not solely be attributed to alterations in mean sea level pressure. Instead, corresponding increases in upper-tropospheric baroclinicity suggest more favourable conditions for the development of stronger systems at higher latitudes, especially at the delta regions of the North Atlantic and the North Pacific storm tracks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We evaluate the effects of spatial resolution on the ability of a regional climate model to reproduce observed extreme precipitation for a region in the Southwestern United States. A total of 73 National Climate Data Center observational sites spread throughout Arizona and New Mexico are compared with regional climate simulations at the spatial resolutions of 50 km and 10 km for a 31 year period from 1980 to 2010. We analyze mean, 3-hourly and 24-hourly extreme precipitation events using WRF regional model simulations driven by NCEP-2 reanalysis. The mean climatological spatial structure of precipitation in the Southwest is well represented by the 10 km resolution but missing in the coarse (50 km resolution) simulation. However, the fine grid has a larger positive bias in mean summer precipitation than the coarse-resolution grid. The large overestimation in the simulation is in part due to scale-dependent deficiencies in the Kain-Fritsch convective parameterization scheme that generate excessive precipitation and induce a slow eastward propagation of the moist convective summer systems in the high-resolution simulation. Despite this overestimation in the mean, the 10 km simulation captures individual extreme summer precipitation events better than the 50 km simulation. In winter, however, the two simulations appear to perform equally in simulating extremes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an assessment of how tropical cyclone activity might change due to the influence of increased atmospheric carbon dioxide concentrations, using the UK’s High Resolution Global Environment Model (HiGEM) with N144 resolution (~90 km in the atmosphere and ~40 km in the ocean). Tropical cyclones are identified using a feature tracking algorithm applied to model output. Tropical cyclones from idealized 30-year 2×CO2 (2CO2) and 4×CO2 (4CO2) simulations are compared to those identified in a 150-year present-day simulation, which is separated into a 5-member ensemble of 30-year integrations. Tropical cyclones are shown to decrease in frequency globally by 9% in the 2CO2 and 26% in the 4CO2. Tropical cyclones only become more intese in the 4CO2, however uncoupled time slice experiments reveal an increase in intensity in the 2CO2. An investigation into the large-scale environmental conditions, known to influence tropical cyclone activity in the main development regions, is used to determine the response of tropical cyclone activity to increased atmospheric CO2. A weaker Walker circulation and a reduction in zonally averaged regions of updrafts lead to a shift in the location of tropical cyclones in the northern hemisphere. A decrease in mean ascent at 500 hPa contributes to the reduction of tropical cyclones in the 2CO2 in most basins. The larger reduction of tropical cyclones in the 4CO2 arises from further reduction of mean ascent at 500 hPa and a large enhancement of vertical wind shear, especially in the southern hemisphere, North Atlantic and North East Pacific.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, change in rainfall, temperature and river discharge are analysed over the last three decades in Central Vietnam. Trends and rainfall indices are evaluated using non-parametric tests at different temporal levels. To overcome the sparse locally available network, the high resolution APHRODITE gridded dataset is used in addition to the existing rain gauges. Finally, existing linkages between discharge changes and trends in rainfall and temperature are explored. Results are indicative of an intensification of rainfall (+15%/decade), with more extreme and longer events. A significant increase in winter rainfall and a decrease in consecutive dry days provides strong evidence for a lengthening wet season in Central Vietnam. In addition, trends based on APHRODITE suggest a strong orographic signal in winter and annual trends. These results underline the local variability in the impacts of climatic change at the global scale. Consequently, it is important that change detection investigations are conducted at the local scale. A very weak signal is detected in the trend of minimum temperature (+0.2°C/decade). River discharge trends show an increase in mean discharge (31 to 35%/decade) over the last decades. Between 54 and 74% of this increase is explained by the increase in precipitation. The maximum discharge also responds significantly to precipitation changes leading to a lengthened wet season and an increase in extreme rainfall events. Such trends can be linked with a likely increase in floods in Central Vietnam, which is important for future adaptation planning and management and flood preparedness in the region. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is large diversity in simulated aerosol forcing among models that participated in the fifth Coupled Model Intercomparison Project (CMIP5), particularly related to aerosol interactions with clouds. Here we use the reported model data and fitted aerosol-cloud relations to separate the main sources of inter-model diversity in the magnitude of the cloud albedo effect. There is large diversity in the global load and spatial distribution of sulfate aerosol, as well as in global-mean cloud-top effective radius. The use of different parameterizations of aerosol-cloud interactions makes the largest contribution to diversity in modeled radiative forcing (up to -39%, +48% about the mean estimate). Uncertainty in pre-industrial sulfate load also makes a substantial contribution (-15%, +61% about the mean estimate), with smaller contributions from inter-model differences in the historical change in sulfate load and in mean cloud fraction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analysis of meteorological records from four stations (Chittagong, Cox’s Bazar, Rangamati, Sitakunda) in south-eastern Bangladesh show coherent changes in climate over the past three decades. Mean maximum daily temperatures have increased between 1980 and 2013 by ca. 0.4 to 0.6°C per decade, with changes of comparable magnitude in individual seasons. The increase in mean maximum daily temperature is associated with decreased cloud cover and wind speed, particularly in the pre- and post-monsoon seasons. During these two seasons, the correlation between changes in maximum temperature and clouds is between -0.5 and -0.7; the correlation with wind speed is weaker although similar values are obtained in some seasons. Changes in mean daily minimum (and hence mean) temperature differ between the northern and southern part of the basin: northern stations show a decrease in mean daily minimum temperature during the post-monsoon season of between 0.2 and 0.5°C per decade while southern stations show an increase of ca. 0.1 to 0.4°C per decade during the pre-monsoon and monsoon seasons. In contrast to the significant changes in temperature, there is no trend in mean or total precipitation at any station. However, there is a significant increase in the number of rain days at the northern sites during the monsoon season, with an increase per decade of 3 days in Sitakunda and 7 days at Rangamati. These climate changes could have a significant impact on the hydrology of the Halda Basin, which supplies water to Chittagong and is the major pisciculture centre in Bangladesh.