991 resultados para ANTIMICROBIAL PROPERTIES
Resumo:
Five new silver(I) complexes of formulas [Ag(Tpms)] (1), [Ag(Tpms)-(PPh3)] (2), [Ag(Tpms)(PCy3)] (3), [Ag(PTA)][BF4] (4), and [Ag(Tpms)(PTA)] (5) {Tpms = tris(pyrazol-1-yl)methanesulfonate, PPh3 = triphenylphosphane, PCy3 = tricyclohexylphosphane, PTA = 1,3,5-triaza-7-phosphaadamantane) have been synthesized and fully characterized by elemental analyses, H-1, C-13, and P-31 NMR, electrospray ionization mass spectrometry (ESI-MS), and IR spectroscopic techniques. The single crystal X-ray diffraction study of 3 shows the Tpms ligand acting in the N-3-facially coordinating mode, while in 2 and 5 a N2O-coordination is found, with the SO3 group bonded to silver and a pendant free pyrazolyl ring. Features of the tilting in the coordinated pyrazolyl rings in these cases suggest that this inequivalence is related with the cone angles of the phosphanes. A detailed study of antimycobacterial and antiproliferative properties of all compounds has been carried out. They were screened for their in vitro antimicrobial activities against the standard strains Enterococcus faecalis (ATCC 29922), Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), Streptococcus pyogenes (SF37), Streptococcus sanguinis (SK36), Streptococcus mutans (UA1S9), Escherichia coli (ATCC 25922), and the fungus Candida albicans (ATCC 24443). Complexes 1-5 have been found to display effective antimicrobial activity against the series of bacteria and fungi, and some of them are potential candidates for antiseptic or disinfectant drugs. Interaction of Ag complexes with deoxyribonucleic acid (DNA) has been studied by fluorescence spectroscopic techniques, using ethidium bromide (EB) as a fluorescence probe of DNA. The decrease in the fluorescence of DNA EB system on addition of Ag complexes shows that the fluorescence quenching of DNA EB complex occurs and compound 3 is particularly active. Complexes 1-5 exhibit pronounced antiproliferative activity against human malignant melanoma (A375) with an activity often higher than that of AgNO3, which has been used as a control, following the same order of activity inhibition on DNA, i.e., 3 > 2 > 1 > 5 > AgNO3 >> 4.
Resumo:
The nitrogen heterocyclic organic compounds 1,4 dioxide pyrazine and quinoxaline derivatives have been widely studied due to their potential use as synthetic drugs. The thermochemical study of three N,N´-dioxides: 2,3,5-trimethylpyrazine-1,4-dioxide, tetramethylpyrazine-1,4-dioxide and 6-chloro-2,3-dimethilquinoxaline 1,4-dioxide has been recently developed in order to establish relationships among the energetical, structural and reactivity properties [4,5]. Several studies have reported their pharmacological activity, particularly as antimicrobial agents [1,2,3]. It has also been established a relation between energetical and structural properties and biological activity, once these compounds present N – oxide bonds, increasing their oxidative capacity. The present work reports the study of antimicrobial activity for those compounds against the bacteria Geobacillus stearothermophylus, Staphylococcus aureus, Streptococcus agalactiae, Escherichia coli and also against the yeasts Saccharomyces cerevisiae PYCC 4072, Candida albicans PYCC3436T, Candida tropicalis PYCC, Issatchenka Orientalis PYCC. The determination of the minimal inhibitory concentration (MIC), points to an antimicrobial activity and the preliminary results indicate that these compounds may be potential candidates as antimicrobial drugs with clinical, agriculture or food industries applications.
Resumo:
Origanum glandulosum Desf. (Species endemic of North Africa: Tunisia and Algeria) is important medicinally as it has antimicrobial, antifungal, antioxidant, antibacterial, antithrombin, antimutagenic, angiogenic, antiparasetic and antihyperglycaemic activities. Phytochemical investigations of the species of this genus have resulted in the extraction of a number of important bioactive compounds. This emphasizes on the need of extensive study for reporting the additional information on the medicinal importance, the biological activities and properties of oil of other unattended species of Origanum glandulosum. © 2015 Springer-Verlag France.
Resumo:
Honeys are described possessing different properties including antimicrobial. Many studies have presented this activity of honeys produced by Apis mellifera bees, however studies including activities of stingless bees honeys are scarce. The aim of this study was to compare the antimicrobial activity of honeys collected in the Amazonas State from Melipona compressipes, Melipona seminigra and Apis mellifera against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Chromobacterium violaceum, and Candida albicans. Minimum inhibitory concentrations were determined using the agar dilution method with Müller-Hinton agar (for bacteria) or Saboraud agar (for yeast). Staphylococcus aureus and E. faecalis were inhibited by all honeys at concentrations below 12%, while E. coli and C. violaceum were inhibited by stingless bee honeys at concentrations between 10 and 20%. A. mellifera honey inhibited E. coli at a concentration of 7% and Candida violaceum at 0.7%. C. albicans were inhibited only with honey concentrations between 30 and 40%. All examined honey had antimicrobial activity against the tested pathogens, thus serving as potential antimicrobial agents for several therapeutic approaches.
Resumo:
Review aricle
Resumo:
Tese de Doutoramento em Biologia de Plantas
Resumo:
Surgical site infections (SSI) often occur after invasive surgery, which is as a serious health problem, making it important to develop new biomaterials to prevent infections. Spider silk is a natural biomaterial with excellent biocompatibility, low immunogenicity and controllable biodegradability. Through recombinant DNA technology, spider silk-based materials can be bioengineered and functionalized with antimicrobial (AM) peptides 1. The aim of this study is to develop new materials by combining spider silk chimeric proteins with AM properties and silk fibroin extracted from Bombyx mori cocoons to prevent microbial infection. Here, spider silk domains derived from the dragline sequence of the spider Nephila clavipes (6 mer and 15 mer) were fused with the AM peptides Hepcidin and Human Neutrophil peptide 1 (HNP1). The spider silk domain maintained its self-assembly features allowing the formation of beta-sheets to lock in structures without any chemical cross-linking. The AM properties of the developed chimeric proteins showed that 6 mer + HNP1 protein had a broad microbicidal activity against pathogens. The 6 mer + HNP-1 protein was then assembled with different percentages of silk fibroin into multifunctional films. In vitro cell studies with a human fibroblasts cell line (MRC5) showed nontoxic and cytocompatible behavior of the films. The positive cellular response, together with structural properties, suggests that this new fusion protein plus silk fibroin may be good candidates as multifunctional materials to prevent SSI.
Resumo:
Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the AgxO thin film showed both metallic Ag and Ag-O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while AgxO layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and AgxO surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to AgxO coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology were pointed as the main factors in the origin of the antibacterial effect found in AgxO thin film. The present study demonstrated that AgxO coating presented antibacterial behavior and its application in cardiovascular stents is promising.
Resumo:
Chitosan coating was applied in Lactoferrin (Lf)-Glycomacropeptide (GMP) nanohydrogels by layer-by-layer coating process. A volume ratio of 0.1 of Lf-GMP nanohydrogels (0.2 mg.mL-1, at pH 5.0) to chitosan (1 mg.mL-1, at pH 3) demonstrated to be the optimal condition to obtain stable nanohydrogels with size of 230 ± 12 nm, a PdI of 0.22 ± 0.02 and a -potential of 30.0 ± 0.15 mV. Transmission electron microscopy (TEM) images showed that the application of chitosan coating in Lf-GMP did not affect the spherical shape of nanohydrogels and confirmed the low aggregation of nanohydrogels in solution. The analysis of chemical interactions between chitosan and Lf-GMP nanohydrogels were performed by Fourier transform infrared spectroscopy (FTIR) and by circular dichroism (CD) that revealed that a specific chemical interaction occurring between functional groups of protein-based nanohydrogels and active groups of the chitosan was established. The effect of chitosan coating on release mechanisms of Lf-GMP nanohydrogels at acid conditions (pH 2, 37 ºC) was evaluated by the encapsulation of a model compound (caffeine) in these systems. Linear Superposition Model was used to fit the experimental data and revealed that Fick and relaxation mechanisms are involved in caffeine release. It was also observed that the Fick contribution increase with the application of chitosan coating. In vitro gastric digestion was performed with Lf-GMP nanohydrogels and Lf-GMP nanohydrogels with chitosan coating and it was observed that the presence of chitosan improve the stability of Lf and GMP (proteins were hydrolysed at a slower rate and were present in solution by longer time). Native electrophoreses revealed that the nanohydrogels without coating remained intact in solution until 15 min and with chitosan coating remained intact until 60 min, during gastric digestion.
Resumo:
Bacterial cellulose (BC) films from two distinct sources (obtained by static culture with Gluconacetobacter xylinus ATCC 53582 (BC1) and from a commercial source (BC2)) were modified by bovine lactoferrin (bLF) adsorption. The functionalized films (BC+bLF) were assessed as edible antimicrobial packaging, for use in direct contact with highly perishable foods, specifically fresh sausage as a model of meat products. BC+bLF films and sausage casings were characterized regarding their water vapour permeability (WVP), mechanical properties, and bactericidal efficiency against two food pathogens, Escherichia coli and Staphylococcus aureus. Considering their edibility, an in vitro gastrointestinal tract model was used to study the changes occurring in the BC films during passage through the gastrointestinal tract. Moreover, the cytotoxicity of the BC films against 3T3 mouse embryo fibroblasts was evaluated. BC1 and BC2 showed equivalent density, WVP and maximum tensile strength. The percentage of bactericidal efficiency of BC1 and BC2 with adsorbed bLF (BC1+bLF and BC2+bLF, respectively) in the standalone films and in inoculated fresh sausages, was similar against E. coli (mean reduction 69 % in the films per se versus 94 % in the sausages) and S. aureus (mean reduction 97 % in the films per se versus 36 % in the case sausages). Moreover, the BC1+bLF and BC2+bLF films significantly hindered the specific growth rate of both bacteria. Finally, no relevant cytotoxicity against 3T3 fibroblasts was found for the films before and after the simulated digestion. BC films with adsorbed bLF may constitute an approach in the development of bio-based edible antimicrobial packaging systems.
Resumo:
Drinking water is currently a scarce world resource, the preparation of which requires complex treatments that include clarification of suspended particles and disinfection. Seed extracts of Moringa oleifera Lam., a tropical tree, have been proposed as an environment-friendly alternative, due to their traditional use for the clarification of drinking water. However, the precise nature of the active components of the extract and whether they may be produced in recombinant form are unknown. Here we show that recombinant or synthetic forms of a cationic seed polypeptide mediate efficient sedimentation of suspended mineral particles and bacteria. Unexpectedly, the polypeptide was also found to possesses a bactericidal activity capable of disinfecting heavily contaminated water. Furthermore, the polypeptide has been shown to efficiently kill several pathogenic bacteria, including antibiotic-resistant isolates of Staphylococcus, Streptococcus, and Legionella species. Thus, this polypeptide displays the unprecedented feature of combining water purification and disinfectant properties. Identification of an active principle derived from the seed extracts points to a range of potential for drinking water treatment or skin and mucosal disinfection in clinical settings.
Resumo:
Antibacterial and antifungal properties of wax and hexane extracts of Citrus spp. peels were tested using bioautographic and microdilution techniques against three plant pathogenic fungi (Penicillium digitatum, Curvularia sp., and Colletotrichum sp.), two human pathogens (Trichophyton mentagrophytes and Microsporum canis), and two opportunistic bacteria (Escherichia coli and Staphylococcus aureus). Two polymethoxylated flavonoids and a coumarin derivative, were isolated and identified from peel extracts, which presented antimicrobial activity especially against M. canis and T. mentagrophytes: 4',5,6,7,8-pentamethoxyflavone (tangeritin) and 3',4',5,6,7,8-hexamethoxyflavone (nobiletin) from C. reticulata; and 6,7-dimethoxycoumarin (also known as escoparone, scoparone or scoparin) from C. limon.
Resumo:
Propolis is a resinous mixture of different plant exudates collected by honeybees. Currently, propolis is widely used as a food supplement and in folk medicine. We have evaluated 20 Cuban propolis extracts of different chemical types, brown (BCP), red and yellow (YCP), with respect to their in vitro antibacterial, antifungal and antiprotozoal properties. The extracts inhibited the growth of Staphylococcus aureus and Trichophyton rubrum at low µg/mL concentrations, whereas they were not active against Escherichia coli and Candida albicans. The major activity of the extracts was found against the protozoa Leishmania, Trypanosoma and Plasmodium, although cytotoxicity against MRC-5 cells was also observed. The BCP-3, YCP-39 and YCP-60 extracts showed the highest activity against P. falciparum, with 50% of microbial growth (IC50) values of 0.2 µg/mL. A positive correlation between the biological activity and the chemical composition was observed for YCP extracts. The most promising antimicrobial activity corresponds to YCP subtype B, which contains acetyl triterpenes as the main constituents. The present in vitro study highlights the potential of propolis against protozoa, but further research is needed to increase selectivity towards the parasite. The observed chemical composition-activity relationship of propolis can contribute to the identification of the active principles and standardisation of this bee product.
Characterization of a plant-derived peptide displaying water clarifying and antimicrobial activities
Resumo:
SUMMARY Drinking water is currently a scarce world resource, the preparation of which requires complex treatments that include clarification of suspended particles and disinfection. Seed extracts of Moringa oleifera Lam., a tropical tree, have been proposed as an environment- friendly alternative, due to their traditional use for the clarification of drinking water. However, the precise nature of the active components was unknown. Here, we show that recombinant or synthetic forms of a cationic seed polypeptide mediate efficient sedimentation of suspended mineral particles and bacteria. Unexpectedly, the polypeptide was also found to possesses a bactericidal activity capable of disinfecting heavily contaminated water. Furthermore, the polypeptide has been shown to efficiently kill several pathogenic bacteria, including antibiotic-resistant isolates of Pseudomona, Streptococcus and Legionella species. Structural modeling of the peptide coupled to the functional analysis of synthetic peptide derivatives delineated distinct structural determinants for the flocculation and antibacterial activities. Our results suggest that a glutamine-rich portion of the polypeptide is involved in the sedimentation process; alternatively, the antibacterial activity depends on a amphiphilic loop. Assembly of multiple copies of this loop into a branched peptide derivative strongly enhances antibacterial activity without displaying hemolytic effect. In conclusion, this polypeptide displays the unprecedented feature of combining efficient water purification and disinfectant properties indicating different molecular mechanisms involved in each case. This work not only identified the features responsible for these activities but also provides useful information that has implications for the further development of this cationic polypeptide as a potent antibacterial agent. RESUME L'eau potable est actuellement une ressource limitée dans le monde. La production d'eau propre à la consommation exige des traitements complexes, incluant la clarification des particules en suspension ainsi que sa désinfection par des additifs chimiques. Les extraits de la graine d'un arbre tropical, Moringa oleifera, sont utilisés traditionnellement en Afrique afin de clarifier l'eau. Quoique la nature exacte des composants actifs était inconnue, on a pu mettre en évidence un polypeptide cationique contenu dans ces graines, capable de sédimenter de manière efficace des particules minérales en suspension ainsi que des bactéries. Ce travail a aussi mis en évidence que ce polypeptide a une activité bactéricide, permettant une désinfection d'eau fortement contaminée. De plus, nous avons démontré que ce polypeptide est efficace contre de nombreuses souches bactériennes pathogènes, également celles résistantes aux antibiotiques comme Pseudomonas, Streptococcus et Legionella. L'analyse de la structure moléculaire de ce polypeptide, couplée à son analyse fonctionnelle a mis en évidence deux domaines structuraux distinct, un pour l'activité de floculation et l'autre pour l'activité antibactérienne. Nos résultats suggèrent que le domaine riche en glutamine est impliqué dans le processus de sédimentation et que l'activité antimicrobienne dépend d'un domaine formant une boucle amphiphilique. En ramifiant plusieurs copies de cette boucle on a pu augmenter de manière significative l'activité antibactérienne. En conclusion, nous avons pu démontrer que ce polypeptide à la capacité unique de combiner des propriétés de purification et de désinfection de l'eau, ce qui implique des mécanismes moléculaires distincts pour ces deux activités. Ce travail a permis d'identifier les domaines du polypeptide qui sont responsables de ses activités et offre une perspective pour le développement d'un nouvel agent antimicrobien.
Resumo:
Antimicrobial films were prepared by including enterocins to alginate, polyvinyl alcohol (PVOH), and zein films. The physical performance of the films was assessed by measuring color, microstructure (SEM), water vapor permeability (WVP), and tensile properties. All studied biopolymers showed poor WVP and limited tensile properties. PVOH showed the best performance exhibiting the lowest WVP values, higher tensile properties, and flexibility among studied biopolymers. SEM of antimicrobial films showed increased presence of voids and pores as a consequence of enterocin addition. However, changes in microstructure did not disturb WVP of films. Moreover, enterocin-containing films showed slight improvement compared to control films. Addition of enterocins to PVOH films had a plasticizing effect, by reducing its tensile strength and increasing the strain at break. The presence of enterocins had an important effect on tensile properties of zein films by significantly reducing its brittleness. Addition of enterocins, thus, proved not to disturb the physical performance of studied biopolymers. Development of new antimicrobial biodegradable packaging materials may contribute to improving food safety while reducing environmental impact derived from packaging waste.