191 resultados para ANGIOPLASTY
Resumo:
BACKGROUND: Recanalization of the culprit lesion is the main goal of primary angioplasty for acute ST-segment elevation myocardial infarction (STEMI). Patients presenting with acute myocardial infarction and multivessel disease are, therefore, usually subjected to staged procedures, with the primary percutaneous coronary intervention (PCI) confined to recanalization of the infarct-related artery (IRA). Theoretically at least, early relief of stenoses of non-infarct-related arteries could promote collateral circulation, which could help to limit the infarct size. However, the safety and feasibility of such an approach has not been adequately established. METHODS: In this single-center prospective study we examined 73 consecutive patients who had an acute STEMI and at least one or more lesions > or = 70% in a major epicardial vessel other than the infarct-related artery. In the first 28 patients, forming the multi-vessel (MV) PCI group, all lesions were treated during the primary procedure. In the following 45 patients, forming the culprit-only (CO) PCI group, only the culprit lesion was treated during the initial procedure, followed by either planned-staged or ischemia-driven revascularization of the non-culprit lesions. Fluoroscopy time and contrast dye amount were compared between both groups, and patients were followed up for one year for major adverse cardiac events (MACE) and other significant clinical events. RESULTS: The two groups were well balanced in terms of clinical characteristics, number of diseased vessels and angiographic characteristics of the culprit lesion. In the MV-PCI group, 2.51 lesions per patient were treated using 2.96 +/- 1.34 stents (1.00 lesions and 1.76 +/- 1.17 stents in the CO-PCI group, both p < 0.001). The fluoroscopy time increased from 10.3 (7.2-16.9) min in the CO-PCI group to 12.5 (8.5-19.3) min in the MV-PCI group (p = 0.22), and the amount of contrast used from 200 (180-250) ml to 250 (200-300) ml, respectively (p = 0.16). Peak CK and CK-MB were significantly lower in patients of the MV-PCI group (843 +/- 845 and 135 +/- 125 vs 1652 +/- 1550 and 207 +/- 155 U/l, p < 0.001 and 0.01, respectively). Similar rates of major adverse cardiac events at one year were observed in the two groups (24% and 28% in multi-vessel and culprit treatment groups, p = 0.73). The incidence of new revascularization in both infarct- and non-infarct-related arteries was also similar (24% and 28%, respectively, p = 0.73). CONCLUSION: We may state from this limited experience that a multi-vessel stenting approach for patients with acute STEMI and multi-vessel disease is feasible and probably safe during routine clinical practice. Our data suggest that this approach may help to limit the infarct size. However, larger studies, perhaps using drug-eluting stents, are still needed to further evaluate the safety and efficiency of this procedure, and whether it is associated with a lower need of subsequent revascularization and lower costs.
Resumo:
BACKGROUND: Despite advances in surgical and interventional techniques, the optimal surgical treatment of severe aortic (re) coarctation and hypoplastic aortic arch is still controversial. Anatomic repair may require extensive dissection, cardiopulmonary bypass, and deep hypothermic circulatory arrest with their inherent risks. The aim of this study was to analyze the outcome of off-pump extraanatomic aortic bypass as a surgical alternative to local repair. METHODS: From February 2000 to December 2005, ten consecutive patients (median age 20 years; range, 11 to 38 years) with severe aortic (re) coarctation (n = 4) and (or) hypoplastic aortic arch (n = 7) underwent off-pump extraanatomic aortic bypass through median sternotomy. All but three patients had undergone previous surgery for coarctation and angioplasty or stenting. Three patients underwent concomitant replacement of the ascending aorta because of an aneurysm using cardiopulmonary bypass. RESULTS: Postoperative hospital course was uneventful in all patients. There was no perioperative mortality or significant morbidity. During a mean follow-up of 48 +/- 22 months no patient required additional procedures. All patients were free of symptoms; no patient showed signs of heart failure after follow-up. At last follow-up, no patient presented with claudication, nor any patient experienced orthostatic problems due to a steal phenomenon. During follow-up, hypertension resolved in all patients with residual mild hypertension in two patients. CONCLUSIONS: Off-pump extraanatomic aortic bypass is an attractive treatment option for complex aortic (re) coarctation and hypoplastic aortic arch. Perioperative risks are minimized, hypertension is influenced favorably, and midterm survival is event-free.
Resumo:
OBJECTIVE: Estradiol (E(2)) is known to accelerate reendothelialization and thus prevent intimal thickening and in-stent restenosis after angioplasty. Transplantation experiments with ERalpha(-/-) mice have previously shown that E(2) acts through local and bone marrow cell compartments to enhance endothelial healing. However, the downstream mechanisms induced by E(2) to mediate endothelial repair are still poorly understood. METHODS AND RESULTS: We show here that after endovascular carotid artery injury, E(2)-enhanced endothelial repair is lost in osteopontin-deficient mice (OPN(-/-)). Transplantation of OPN(-/-) bone marrow into wild-type lethally irradiated mice, and vice versa, suggested that osteopontin plays a crucial role in both the local and the bone marrow actions of E(2). In the vascular compartment, using transgenic mice expressing doxycyclin regulatable-osteopontin, we show that endothelial cell specific osteopontin overexpression mimics E(2)-enhanced endothelial cell migration and proliferation in the regenerating endothelium. In the bone marrow cell compartment, we demonstrate that E(2) enhances bone marrow-derived mononuclear cell adhesion to regenerating endothelium in vivo, and that this effect is dependent on osteopontin. CONCLUSIONS: We demonstrate here that E(2) acceleration of the endothelial repair requires osteopontin, both for bone marrow-derived cell recruitment and for endothelial cell migration and proliferation.
Resumo:
Aprotinin is widely used in cardiac surgery to reduce postoperative bleeding and the need for blood transfusion. Controversy exists regarding the influence of aprotinin on renal function and its effect on the incidence of perioperative myocardial infarction (MI) and cerebrovascular incidents (CVI). In the present study, we analyzed the incidence of these adverse events in patients who underwent coronary artery bypass grafting (CABG) surgery under full-dose aprotinin and compared the data with those recently reported by Mangano et al [2006]. For 751 consecutive patients undergoing CABG surgery under full-dose aprotinin (>4 million kalikrein-inhibitor units) we analyzed in-hospital data on renal dysfunction or failure, MI (defined as creatine kinase-myocardial band > 60 iU/L), and CVI (defined as persistent or transient neurological symptoms and/or positive computed tomographic scan). Average age was 67.0 +/- 9.9 years, and patient pre- and perioperative characteristics were similar to those in the Society of Thoracic Surgeons database. The mortality (2.8%) and incidence of renal failure (5.2%) ranged within the reported results. The incidence rates of MI (8% versus 16%; P < .01) and CVI (2% versus 6%; P < .01) however, were significantly lower than those reported by Mangano et al. Thus the data of our single center experience do not confirm the recently reported negative effect of full-dose aprotinin on the incidence of MI and CVI. Therefore, aprotinin may still remain a valid option to reduce postoperative bleeding, especially because of the increased use of aggressive fibrinolytic therapy following percutaneous transluminal coronary angioplasty.
Resumo:
In industrial countries, cardiovascular diseases remain the primary cause of death. This review summarizes the role of percutaneous coronary interventions (PCI) in the treatment of coronary heart disease. Interventional therapy of coronary artery disease was initiated in 1977 with the introduction of balloon angioplasty by Andreas Grüntzig in Zurich. Technical progress since has been related to construction and materials of catheters, but also to digital processing of x-ray imaging. Additional methods - rotablation, atherectomy, laser, intravascular ultrasound, and most importantly stent implantation were developed. Only stents significantly changed the procedure. They are today an integral part of PCI.
Resumo:
Interventional cardiology in a day-case setting might reduce logistic constraints on hospital resources. However, in contrast with coronary angioplasty, few data support the feasibility and safety of radiofrequency catheter ablation (RCA). The aim of this prospective, multicenter cohort study was to evaluate the feasibility and safety of RCA in 1,342 patients (814 men; mean age 57 +/- 17 years) considered eligible for ambulatory RCA, according to specific set of criteria, for common atrial flutter (n = 632), atrioventricular nodal reentrant tachycardia (n = 436), accessory pathways (n = 202), and atrial tachycardia (n = 72). Patients suitable for early discharge (4 to 6 hours after uncomplicated RCA) were scheduled for 1-month follow-up. Predictive factors for delayed complications were studied by multivariate analysis. Of the 1,342 enrolled patients, 1,270 (94.6%) were discharged the same day and followed for 1 month; no deaths occurred, and the readmission rate was 0.79% (95% confidence interval 0.30% to 1.27%). Six patients had significant puncture complications, 2 presented with symptomatic delayed pulmonary embolism, and 2 had new onset of poorly tolerated atrial flutter. None of these complications was life threatening. Multivariate analysis did not identify any significant independent predictors for delayed complications. In conclusion, these data suggest that same-day discharge after uncomplicated RCA for routine supraventricular arrhythmias is safe and may be applicable in clinical practice. This approach is known to be associated with significant patient satisfaction and cost savings and can be considered a first-line option in most patients who undergo routine ablation procedures.
Resumo:
PURPOSE: To prospectively determine reproducibility of magnetic resonance (MR) angiography and MR spectroscopy of deoxymyoglobin in assessment of collateral vessels and tissue perfusion in patients with critical limb ischemia (CLI) and to follow changes in patients undergoing intramuscular vascular endothelial growth factor (pVEGF)-C gene therapy, percutaneous transluminal angioplasty, supervised exercise training, or no therapy. MATERIALS AND METHODS: Study and gene therapy protocols were approved, and all patients gave written informed consent. To determine repeatability and reproducibility, seven patients underwent MR angiography and five underwent MR spectroscopy. The techniques were used to judge disease progress in 12 other patients with or without therapy: MR angiography to help determine change in visualization of collateral vessels and MR spectroscopy to help assess change in perfusion at proximal and distal calf levels. MR angiographic results were subjectively analyzed by three blinded readers. Intraobserver variability was expressed as 95% confidence interval (CI) (n=7); interobserver variability, as kappa statistic (n=15). Reexamination variability of MR spectroscopy was given as 95% CI for subsequent recovery times, and correlation with disease extent was calculated with Kendall taub rank correlation. Fisher-Yates test was used to correlate changes with pressure measurements and clinical course. RESULTS: Intraobserver and interobserver concordance was sensitive for detection of collateral vessels. Intraobserver agreement was 85.7% (95% CI: 42.1%, 99.6%). Interobserver agreement was high for small collateral vessels (kappa=0.74, P <.001) and fair for large collateral vessels (kappa=0.36, P=.002). MR spectroscopy was reproducible (95% CI: +/-26 seconds for proximal, +/-21 seconds for distal) and showed a correlation with disease extent (proximal calf, taub=0.84, P <.001; distal calf, taub=0.68, P=.04). Small collateral vessels increased over time (P=.04) but did not correlate with pressure measurements and clinical course. Recovery time correlated with clinical course (proximal calf, P=.03; distal calf, P=.005). CONCLUSION: MR angiography and MR spectroscopy of deoxymyoglobin can help document changes in visualization of collateral vessels and tissue perfusion in patients with CLI.
Resumo:
AIMS: Intravascular inflammatory events during ischaemia/reperfusion injury following coronary angioplasty alter and denudate the endothelium of its natural anticoagulant heparan sulfate proteoglycan (HSPG) layer, contributing to myocardial tissue damage. We propose that locally targeted cytoprotection of ischaemic myocardium with the glycosaminoglycan analogue dextran sulfate (DXS, MW 5000) may protect damaged tissue from reperfusion injury by functional restoration of HSPG. METHODS AND RESULTS: In a closed chest porcine model of acute myocardial ischaemia/reperfusion injury (60 min ischaemia, 120 min reperfusion), DXS was administered intracoronarily into the area at risk 5 min prior to reperfusion. Despite similar areas at risk in both groups (39+/-8% and 42+/-9% of left ventricular mass), DXS significantly decreased myocardial infarct size from 61+/-12% of the area at risk for vehicle controls to 39+/-14%. Cardioprotection correlated with reduced cardiac enzyme release creatine kinase (CK-MB, troponin-I). DXS abrogated myocardial complement deposition and substantially decreased vascular expression of pro-coagulant tissue factor in ischaemic myocardium. DXS binding, detected using fluorescein-labelled agent, localized to ischaemically damaged blood vessels/myocardium and correlated with reduced vascular staining of HSPG. CONCLUSION: The significant cardioprotection obtained through targeted cytoprotection of ischaemic tissue prior to reperfusion in this model of acute myocardial infarction suggests a possible role for the local modulation of vascular inflammation by glycosaminoglycan analogues as a novel therapy to reduce reperfusion injury.
Resumo:
PURPOSE: To report the application of a true lumen re-entry device in the bailout treatment of chronic total occlusions (CTO) of the superficial femoral artery (SFA) after failed angioplasty. METHODS: Nineteen patients (12 men; mean age 81 years, range 61-97) with 20 SFA CTOs and Rutherford category 2 to 5 ischemia were prospectively evaluated. All CTOs had unsuccessful recanalization using conventional techniques and were subsequently treated with the Outback LTD catheter. Follow-up at 3, 6, and 12 months included ankle/toe pressure measurement and pulse volume recordings. Endpoints were revascularization rate, target lesion revascularization, and limb salvage. RESULTS: Revascularization was achieved in 95% of the cases. There were 2 (10%) periprocedural complications unrelated to the re-entry device, which were resolved by endovascular or surgical treatment. The target lesion revascularization rate was 10%, with the 2 events occurring at 3 and 6 months, respectively, in patients with Rutherford category 4-5 ischemia. There was one below-the-knee amputation in the patient with failed revascularization. CONCLUSION: The acute failure of endovascular treatment of SFA CTOs is most often due to an inability to re-enter the true lumen after the occlusion is crossed in a subintimal plane. Bailout revascularization with the Outback LTD catheter is highly successful and shows a low device-related complication rate. This needle- and fluoroscopic-based re-entry device increases the endovascular success rate and is therefore expanding the minimally invasive treatment options for surgically unfit patients.
Resumo:
BACKGROUND: Different stents in infrainguinal arteries have recently been associated with stent fractures and unfavorable clinical outcome, although data is limited regarding fractures of the Xpert selfexpanding nitinol stent. Thus, purpose of the present investigation was to evaluate its incidence and clinical implications in lower limb arteries. PATIENTS AND METHODS: Fifty-three consecutive patients (53 limbs) with peripheral arterial disease underwent secondary Xpert stent implantation due to suboptimal primary balloon angioplasty (PTA). Median age was 76 years. Stent fractures were evaluated by plain X-ray at median follow-up of 16 months. Stent patency was assessed by duplex ultrasound and sustained clinical improvement was defined as improvement of the ABI of > or = 0.10 together with improvement of at least one Rutherford class above the baseline finding throughout follow-up. RESULTS: Median length of femoropopliteal and infrapopliteal lesion was 3.0 and 2.3 cm, respectively. Sixtyfive stents were implanted in 43 limbs with femoropopliteal and 10 stents in 10 limbs with infrapopliteal lesion, respectively. Stent fractures occurred in 3 of 43 limbs (7.0%) of patients with femoropopliteal lesion with stent-based fracture rate of 4.6%. All fractured stents showed multiple struts fractures and occurred in the distal and middle superficial femoral artery. No stent fracture was observed in infrapopliteal lesions. The fractured stents were not associated with any clinical deterioration. Sustained clinical improvement was 71.0% and 54.6% for femoropopliteal and infrapopliteal lesions, respectively. Stent patency assessed by duplex was 65.2 and 63.9% for femoropopliteal and infrapopliteal lesions, respectively. CONCLUSIONS: Fractures of the Xpert stent were seldom and not associated with unfavorable clinical outcome at midterm follow-up.
Resumo:
AIMS The aim of our study in patients with coronary artery disease (CAD) and present, or absent, myocardial ischaemia during coronary occlusion was to test whether (i) left ventricular (LV) filling pressure is influenced by the collateral circulation and, on the other hand, that (ii) its resistance to flow is directly associated with LV filling pressure. METHODS AND RESULTS In 50 patients with CAD, the following parameters were obtained before and during a 60 s balloon occlusion: LV, aortic (Pao) and coronary pressure (Poccl), flow velocity (Voccl), central venous pressure (CVP), and coronary flow velocity after coronary angioplasty (V(Ø-occl)). The following variables were determined and analysed at 10 s intervals during occlusion, and at 60 s of occlusion: LV end-diastolic pressure (LVEDP), velocity-derived (CFIv) and pressure-derived collateral flow index (CFIp), coronary collateral (Rcoll), and peripheral resistance index to flow (Rperiph). Patients with ECG signs of ischaemia during coronary occlusion (insufficient collaterals, n = 33) had higher values of LVEDP over the entire course of occlusion than those without ECG signs of ischaemia during occlusion (sufficient collaterals, n = 17). Despite no ischaemia in the latter, there was an increase in LVEDP from 20 to 60 s of occlusion. In patients with insufficient collaterals, CFIv decreased and CFIp increased during occlusion. Beyond an occlusive LVEDP > 27 mmHg, Rcoll and Rperiph increased as a function of LVEDP. CONCLUSION Recruitable collaterals are reciprocally tied to LV filling pressure during occlusion. If poorly developed, they affect it via myocardial ischaemia; if well grown, LV filling pressure still increases gradually during occlusion despite the absence of ischaemia indicating transmission of collateral perfusion pressure to the LV. With low, but not high, collateral flow, resistance to collateral as well as coronary peripheral flow is related to LV filling pressure in the high range.
Resumo:
The functional relevance of coronary collaterals in humans has yet to be fully explored. Several studies demonstrated a protective role of collaterals in patients with coronary artery disease. On the other hand, negative aspects of well-developed coronary collaterals have been reported, e.g. a higher rate of restenosis following coronary angioplasty, or a redistribution of blood via collaterals away from the myocardial area in need towards normally perfused areas (coronary steal). In the past, the coronary collateral circulation has been assessed only qualitatively, using visual angiographic or nuclear imaging methods. With the recent advent of intracoronary Doppler and pressure-transducers, quantitative assessment of functional parameters of the coronary circulation has become feasible. This article reviews ongoing research in the field of coronary collaterals in humans, concerning their exact determination, the positive and negative aspects of their structure as well as their functional aspects.
Resumo:
Over the past five decades, management of acute ST-segment elevation myocardial infarction (STEMI) has evolved substantially. Current treatment encompasses a systematic chain of network activation, antithrombotic drugs, and rapid instigation of mechanical reperfusion, although pharmacoinvasive strategies remain relevant. Secondary prevention with drugs and lifestyle modifications completes the contemporary management package. Despite a tangible improvement in outcomes, STEMI remains a frequent cause of morbidity and mortality, justifying the quest to find new therapeutic avenues. Ways to reduce delays in doing coronary angioplasty after STEMI onset include early recognition of symptoms by patients and prehospital diagnosis by paramedics so that the emergency room can be bypassed in favour of direct admission to the catheterisation laboratory. Mechanical reperfusion can be optimised by improvements to stent design, whereas visualisation of infarct size has been improved by developments in cardiac MRI. Novel treatments to modulate the inflammatory component of atherosclerosis and the vulnerable plaque include use of bioresorbable vascular scaffolds and anti-proliferative drugs. Translational efforts to improve patients' outcomes after STEMI in relation to cardioprotection, cardiac remodelling, and regeneration are also being realised. This is the third in a Series of three papers about ST-segment elevation myocardial infarction.
Resumo:
BACKGROUND The use of ultrathin Doppler angioplasty guidewires has made it possible to measure collateral flow quantitatively. Pharmacologic interventions have been shown to influence collateral flow and, thus, to affect myocardial ischaemia. METHODS Twenty-five patients with coronary artery disease undergoing PTCA were included in the present analysis. Coronary flow velocities were measured in the ipsilateral (n = 25) and contralateral (n = 6; two Doppler wires) vessels during PTCA with and without i.v. adenosine (140 microg/kg.min) before and 3 min after 5 mg metoprolol i.v., respectively. The ipsilateral Doppler wire was positioned distal to the stenosis, whereas the distal end of the contralateral wire was in an angiographically normal vessel. The flow signals of the ipsilateral wire were used to calculate the collateral flow index (CFI). CFI was defined as the ratio of flow velocity during balloon inflation divided by resting flow. RESULTS Heart rate and mean aortic pressure decreased slightly (ns) after i.v. metoprolol. The collateral flow index was 0.25+/-0.12 (one fourth of the resting coronary flow) during the first PTCA and 0.27+/-0.14 (ns versus first PTCA) during the second PTCA, but decreased with metoprolol to 0.16+/-0.08 (p<0.0001 vs. baseline) during the third PTCA. CONCLUSIONS Coronary collateral flow increased slightly but not significantly during maximal vasodilatation with adenosine but decreased in 23 of 25 patients after i.v. metoprolol. Thus, there is a reduction in coronary collateral flow with metoprolol, probably due to an increase in coronary collateral resistance or a reduction in oxygen demand.
Resumo:
PURPOSE To assess the need for clinically-driven secondary revascularization in critical limb ischemia (CLI) patients subsequent to tibial angioplasty during a 2-year follow-up. METHODS Between 2008 and 2010, a total of 128 consecutive CLI patients (80 men; mean age 76.5±9.8 years) underwent tibial angioplasty in 139 limbs. Rutherford categories, ankle-brachial index measurements, and lower limb oscillometries were prospectively assessed. All patients were followed at 3, 6, 12 months, and annually thereafter. Rates of death, primary and secondary sustained clinical improvement, target lesion (TLR) and target extremity revascularization (TER), as well as major amputation, were analyzed retrospectively. Primary clinical improvement was defined as improvement in Rutherford category to a level of intermittent claudication without unplanned amputation or TLR. RESULTS All-cause mortality was 8.6%, 14.8%, 22.9%, and 29.1% at 3, 6, 12, and 24 months. At the same intervals, rates of primary sustained clinical improvement were 74.5%, 53.0%, 42.7%, and 37.1%; for secondary improvement, the rates were 89.1%, 76.0%, 68.4%, and 65.0%. Clinically-driven TLR rates were 14.6%, 29.1%, 41.6%, 46.2%; the rates for TER were 3.0%, 13.6%, 17.2%, and 27.6% in corresponding intervals, while the rates of major amputation were 1.5%, 5.5%, 10.1%, and 10.1%. CONCLUSION Clinically-driven TLR is frequently required to maintain favorable functional clinical outcomes in CLI patients following tibial angioplasty. Dedicated technologies addressing tibial arterial restenosis warrant further academic scrutiny.