879 resultados para ANDROGEN DEPRIVATION
Resumo:
PURPOSE: Attention deficit and hyperactivity disorder (ADHD) is one of the most frequent disorders in childhood and adolescence. Both neurocognitive and environmental factors have been related to ADHD. The current study contributes to the documentation of the predictive relation between early attachment deprivation and ADHD. METHOD: Data were collected from 641 adopted adolescents (53.2 % girls) aged 11-16 years in five countries, using the DSM oriented scale for ADHD of the Child Behavior Checklist (CBCL) (Achenbach and Rescorla, Manual for the ASEBA school-age forms and profiles. University of Vermont, Research Center for Children, Youth and Families, Burlington, 2001). The influence of attachment deprivation on ADHD symptoms was initially tested taking into consideration several key variables that have been reported as influencing ADHD at the adoptee level (age, gender, length of time in the adoptive family, parents' educational level and marital status), and at the level of the country of origin and country of adoption (poverty, quality of health services and values). The analyses were computed using the multilevel modeling technique. RESULTS: The results showed that an increase in the level of ADHD symptoms was predicted by the duration of exposure to early attachment deprivation, estimated from the age of adoption, after controlling for the influence of adoptee and country variables. The effect of the age of adoption was also demonstrated to be specific to the level of ADHD symptoms in comparison to both the externalizing and internalizing behavior scales of the CBCL. CONCLUSION: Deprivation of stable and sensitive care in infancy may have long-lasting consequences for children's development.
Resumo:
The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.
Hematological profile of beef cattle with divergent residual feed intake, following feed deprivation
Resumo:
The objective of this work was to characterize the hematological profiles of steers and bulls, according to residual feed intake (RFI), after feed deprivation. Twenty‑month‑old Nellore steers and bulls were fed feedlot diets for 70 and 56 days, respectively. RFI was calculated as the difference between actual feed intake and expected feed intake. More and less efficient steers and bulls, according to RFI, were subjected to 24 hours of food deprivation. Blood was sampled prior to and following the withdrawal period. Hematological analyses included total and differential white blood cell count, red blood cell count and morphology, and plasma glucose concentration. Variation in RFI did not influence plasma glucose concentration or blood cell profiles. Glucose concentrations in bulls decreased from 114 to 97 mg dL‑1, but remained unchanged in steers, and the neutrophil:lymphocyte ratio increased from 0.39 to 0.57 following deprivation. Hematological profiles do not differ between more and less efficient steers and bulls, according to RFI.
Resumo:
While equal political representation of all citizens is a fundamental democratic goal, it is hampered empirically in a multitude of ways. This study examines how the societal level of economic inequality affects the representation of relatively poor citizens by parties and governments. Using CSES survey data for citizens' policy preferences and expert placements of political parties, empirical evidence is found that in economically more unequal societies, the party system represents the preferences of relatively poor citizens worse than in more equal societies. This moderating effect of economic equality is also found for policy congruence between citizens and governments, albeit slightly less clear-cut.
Resumo:
Social deprivation also exists in an industrialised country like Switzerland where there are many different social economic levels; social inequalities have increased in the past years having a major impact on social economic determinants of health. Being aware of these determinants and systematically identifying them in patients has become crucial for the general practitioner in order to improve the way s/he delivers care and interacts with more vulnerable populations. Because the general practitioner is often in contact with people of different socioeconomic levels, s/he is a key witness of social inequalities in health. S/he therefore has a responsibility to document them, to promote health, to prevent disease and be an advocate for the disadvantages in order to influence these social determinants of health.
Resumo:
We have investigated the phenomenon of deprivation in contemporary Switzerland through the adoption of a multidimensional, dynamic approach. By applying Self Organizing Maps (SOM) to a set of 33 non-monetary indicators from the 2009 wave of the Swiss Household Panel (SHP), we identified 13 prototypical forms (or clusters) of well-being, financial vulnerability, psycho-physiological fragility and deprivation within a topological dimensional space. Then new data from the previous waves (2003 to 2008) were classified by the SOM model, making it possible to estimate the weight of the different clusters in time and reconstruct the dynamics of stability and mobility of individuals within the map. Looking at the transition probabilities between year t and year t+1, we observed that the paths of mobility which catalyze the largest number of observations are those connecting clusters that are adjacent on the topological space.
Resumo:
Androgen receptor (AR) is a major therapeutic target that plays pivotal roles in prostate cancer (PCa) and androgen insensitivity syndromes. We previously proposed that compounds recruited to ligand-binding domain (LBD) surfaces could regulate AR activity in hormone-refractory PCa and discovered several surface modulators of AR function. Surprisingly, the most effective compounds bound preferentially to a surface of unknown function [binding function 3 (BF-3)] instead of the coactivator-binding site [activation function 2 (AF-2)]. Different BF-3 mutations have been identified in PCa or androgen insensitivity syndrome patients, and they can strongly affect AR activity. Further, comparison of AR x-ray structures with and without bound ligands at BF-3 and AF-2 showed structural coupling between both pockets. Here, we combine experimental evidence and molecular dynamic simulations to investigate whether BF-3 mutations affect AR LBD function and dynamics possibly via allosteric conversation between surface sites. Our data indicate that AF-2 conformation is indeed closely coupled to BF-3 and provide mechanistic proof of their structural interconnection. BF-3 mutations may function as allosteric elicitors, probably shifting the AR LBD conformational ensemble toward conformations that alter AF-2 propensity to reorganize into subpockets that accommodate N-terminal domain and coactivator peptides. The induced conformation may result in either increased or decreased AR activity. Activating BF-3 mutations also favor the formation of another pocket (BF-4) in the vicinity of AF-2 and BF-3, which we also previously identified as a hot spot for a small compound. We discuss the possibility that BF-3 may be a protein-docking site that binds to the N-terminal domain and corepressors. AR surface sites are attractive pharmacological targets to develop allosteric modulators that might be alternative lead compounds for drug design.
Resumo:
STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS: Mouse sleep-recording facility. PARTICIPANTS: Per2::Luciferase knock-in mice. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.
Resumo:
This study evaluated the effect of menopause, hormone therapy (HT) and aging on sleep. Further, the mechanisms behind these effects were examined by studying the associations between sleep and the nocturnal profiles of sleep-related hormones. Crosssectional study protocols were used to evaluate sleep in normal conditions and during recovery from sleep deprivation. The effect of initiation of HT on sleep and sleeprelated hormones was studied in a prospective controlled trial. Young, premenopausal and postmenopausal women were studied, and the methods included polysomnography, 24-h blood sampling, questionnaires and cognitive tests of attention. Postmenopausal women were less satisfied with their sleep quality than premenopausal women, but this was not reflected in sleepiness or attention. The objective sleep quality was mainly similar in pre- and postmenopausal women, but differed from young women. The recovery mechanisms from sleep deprivation were relatively well-preserved after menopause. HT offered no advantage to sleep after sleep deprivation or under normal conditions. The decreased growth hormone (GH) and prolactin (PRL) levels after menopause were reversible with HT. Neither menopause nor HT had any effect on cortisol levels. In premenopausal women, HT had only minor effects on PRL and cortisol levels. The temporal link between GH and slow wave sleep (SWS) was weaker after menopause. PRL levels were temporally associated with sleep stages, and higher levels were seen during SWS and lower during rapid-eye-movement (REM) sleep. Sleep quality after menopause is better determined by age than by menopausal state. Although HT restores the decreased levels of GH and PRL after menopause, it offers no advantage to sleep quality under normal conditions or after sleep deprivation.
Resumo:
We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.
Resumo:
We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.
Resumo:
Background: In the past, oxidized low density lipoprotein (ox-LDL) has been associated with an unbeneficial lipid profile. This atherogenic lipid profile increases the risk of atherosclerotic cardiovascular diseases. Physical fitness has substantial effect on serum lipoprotein concentration as well as body composition and humoral responses, however interrelationships between ox-LDL and physical fitness have not been widely examined in a nationally representative sample. Aims: This thesis evaluates how cardiorespiratory and muscular fitness associate with ox-LDL lipids and how the other known risk factors of atherosclerosis might alter these associations. Subjects and Methods: The study cohort consisted of 846 healthy young males (mean age 25.1, SD 4.6) who were gathered by voluntary nationwide recruitment. Each participant conducted a series of physical fitness tests (cardiorespiratory and muscular fitness) and answered a detailed questionnaire that included lifestyle habits (i.e. smoking and leisuretime physical activity). Venous blood samples including ox-LDL and serum lipids were also collected. Results: Higher levels of ox-LDL were found in overweight and obese men, however, high cardiorespiratory fitness seemed to protect the overweight from high levels of ox-LDL. Young men who smoked and had poor cardiorespiratory or muscular fitness possessed a higher concentration of ox-LDL lipids when compared to comparable levels of cardiorespiratory or muscular fitness non-smoking young men. Metabolic syndrome was associated with increased levels of ox-LDL and high levels of ox-LDL combined with poor cardiorespiratory and abdominal muscle fitness seems to predict metabolic syndrome in young men. Also, participants with poor cardiorespiratory fitness and low levels of testosterone had higher levels of ox-LDL when compared to participants with high cardiorespiratory fitness / low testosterone as well as those with poor cardiorespiratory fitness / high testosterone. Conclusions: Good cardiorespiratory and muscular fitness protects young men from increased levels of ox-LDL lipids. This association was discovered in young men who were categorized as being overweight, smokers, metabolic syndrome or with low levels of testosterone. Being fit seems to prevent higher levels of ox-LDL, even in young healthy
Resumo:
Rapid eye movement (REM) sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase) controls acetylcholine (Ach) availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12). Two additional groups, a home-cage control (N = 6) and a large platform control (N = 6), were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant), membrane-bound (100,000 g pellet) and soluble (100,000 g supernatant) Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet) enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8). There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2). Our results suggest that REM sleep deprivation changes Ach availability at the level of its receptors through a decrease in Achase activity
Resumo:
The gastric emptying of liquids was investigated in male Wistar rats (8 to 10 weeks old, 210-300 g) dehydrated by water deprivation. In this model of dehydration, weight loss, hematocrit and plasma density were significantly higher in the dehydrated animals than in the control groups after 48 and 72 h of water deprivation (P<0.05). Three test meals (saline (N = 10), water (N = 10) and a WHO rehydrating solution containing in one liter 90 mEq sodium, 20 mEq potassium, 80 mEq chloride and 30 mEq citrate (N = 10)) were used to study gastric emptying following water deprivation for 24, 48 and 72 h. After 72 h, gastric emptying of the water (39.4% retention) and rehydrating solution (49.2% retention) test meals was significantly retarded compared to the corresponding control groups (P<0.05, Mann-Whitney test). The 72-h period of deprivation was used to study the recovery from dehydration, and water was supplied for 60 or 120 min after 67 h of deprivation. Body weight loss, hematocrit and plasma density tended to return to normal when water was offered for 120 min. In the animals supplied with water for 60 min, there was a recovery in the gastric emptying of water while the gastric emptying of the rehydrating solution was still retarded (53.1% retention; P<0.02, Kruskal-Wallis test). In the group supplied with water for 120 min, the gastric emptying of the rehydrating (51.7% retention) and gluco-saline (46.0% retention) solutions tended to be retarded (P = 0.04, Kruskal-Wallis test). In this model of dehydration caused by water deprivation, with little alteration in the body electrolyte content, gastric emptying of the rehydrating solution was retarded after rehydration with water. We conclude that the mechanisms whereby receptors in the duodenal mucosa can modify gastric motility are altered during dehydration caused by water deprivation