983 resultados para ANCHORAGE-INDEPENDENT GROWTH
Resumo:
Cardiac hypertrophy is frequent in chronic hypertension. The renin-angiotensin system, via its effector angiotensin II (Ang II), regulates blood pressure and participates in sustaining hypertension. In addition, a growing body of evidence indicates that Ang II acts also as a growth factor. However, it is still a matter of debate whether the trophic effect of Ang II can trigger cardiac hypertrophy in the absence of elevated blood pressure. To address this question, transgenic mice overexpressing the rat angiotensinogen gene, specifically in the heart, were generated to increase the local activity of the renin-angiotensin system and therefore Ang II production. These mice develop myocardial hypertrophy without signs of fibrosis independently from the presence of hypertension, demonstrating that local Ang II production is important in mediating the hypertrophic response in vivo.
Resumo:
The objective of this work was to parameterize, calibrate, and validate a new version of the soybean growth and yield model developed by Sinclair, under natural field conditions in northeastern Amazon. The meteorological data and the values of soybean growth and leaf area were obtained from an agrometeorological experiment carried out in Paragominas, PA, Brazil, from 2006 to 2009. The climatic conditions during the experiment were very distinct, with a slight reduction in rainfall in 2007, due to the El Niño phenomenon. There was a reduction in the leaf area index (LAI) and in biomass production during this year, which was reproduced by the model. The simulation of the LAI had root mean square error (RMSE) of 0.55 to 0.82 m² m-2, from 2006 to 2009. The simulation of soybean yield for independent data showed a RMSE of 198 kg ha-1, i.e., an overestimation of 3%. The model was calibrated and validated for Amazonian climatic conditions, and can contribute positively to the improvement of the simulations of the impacts of land use change in the Amazon region. The modified version of the Sinclair model is able to adequately simulate leaf area formation, total biomass, and soybean yield, under northeastern Amazon climatic conditions.
Resumo:
Although experimental studies have suggested that insulin-like growth factor I (IGF-I) and its binding protein IGFBP-3 might have a role in the aetiology of coronary artery disease (CAD), the relevance of circulating IGFs and their binding proteins in the development of CAD in human populations is unclear. We conducted a nested case-control study, with a mean follow-up of six years, within the EPIC-Norfolk cohort to assess the association between circulating levels of IGF-I and IGFBP-3 and risk of CAD in up to 1,013 cases and 2,055 controls matched for age, sex and study enrolment date. After adjustment for cardiovascular risk factors, we found no association between circulating levels of IGF-I or IGFBP-3 and risk of CAD (odds ratio: 0.98 (95% Cl 0.90-1.06) per 1 SD increase in circulating IGF-I; odds ratio: 1.02 (95% Cl 0.94-1.12) for IGFBP-3). We examined associations between tagging single nucleotide polymorphisms (tSNPs) at the IGF1 and IGFBP3 loci and circulating IGF-I and IGFBP-3 levels in up to 1,133 cases and 2,223 controls and identified three tSNPs (rs1520220, rs3730204, rs2132571) that showed independent association with either circulating IGF-I or IGFBP-3 levels. In an assessment of 31 SNPs spanning the IGF1 or IGFBP3 loci, none were associated with risk of CAD in a meta-analysis that included EPIC-Norfolk and eight additional studies comprising up to 9,319 cases and 19,964 controls. Our results indicate that IGF-I and IGFBP-3 are unlikely to be importantly involved in the aetiology of CAD in human populations.
Resumo:
In this work annealing and growth of CuInS2 thin films is investigated with quasireal-time in situ Raman spectroscopy. During the annealing a shift of the Raman A1 mode towards lower wave numbers with increasing temperature is observed. A linear temperature dependence of the phonon branch of ¿2 cm¿1/100 K is evaluated. The investigation of the growth process (sulfurization of metallic precursors) with high surface sensitivity reveals the occurrence of phases which are not detected with bulk sensitive methods. This allows a detailed insight in the formation of the CuInS2 phases. Independent from stoichiometry and doping of the starting precursors the CuAu ordering of CuInS2 initially forms as the dominating ordering. The transformation of the CuAu ordering into the chalcopyrite one is, in contrast, strongly dependent on the precursor composition and requires high temperatures.
Resumo:
Our newly generated murine tumor dendritic cell (MuTuDC) lines, generated from tumors developing in transgenic mice expressing the simian virus 40 large T antigen (SV40LgT) and GFP under the DC specific promoter CD11c, reproduce the phenotypic and functional properties of splenic wild type CD8α(+) conventional DCs. They have an immature phenotype with low co-stimulation molecule expression (CD40, CD70, CD80, and CD86) that is upregulated after activation with toll-like receptor ligands. We observed that after transfer into syngeneic C57BL/6 mice, MuTuDC lines were quickly rejected. Tumors grew efficiently in large T transgene-tolerant mice. To investigate the immune response toward the large T antigen that leads to rejection of the MuTuDC lines, they were genetically engineered by lentiviral transduction to express luciferase and tested for the induction of DC tumors after adoptive transfer in various gene deficient recipient mice. Here, we document that the MuTuDC line was rejected in C57BL/6 mice by a CD4 T cell help-independent, perforin-mediated CD8 T cell response to the SV40LgT without pre-activation or co-injection of adjuvants. Using depleting anti-CD8β antibodies, we were able to induce efficient tumor growth in C57BL/6 mice. These results are important for researchers who want to use the MuTuDC lines for in vivo studies.
Resumo:
Tyrosine phosphorylation of ß-catenin, a component of adhesion complexes and the Wnt pathway, affects cell adhesion, migration and gene transcription. By reducing ßcatenin availability using shRNA-mediated gene silencing or expression of intracellular N-cadherin, we show that ß-catenin is required for axon growth downstream of Brain Derived Neurotrophic Factor (BDNF) and Hepatocyte Growth Factor (HGF) signalling. We demonstrate that receptor tyrosine kinases (RTK) Trk and Met interact with and phosphorylate ß-catenin. Neurotrophins (NT) stimulation of Trk receptors results in phosphorylation of ß-catenin at residue Y654 and increased axon growth and branching. Conversely, pharmacological inhibition of Trk or a Y654F mutant blocks these effects. ß-catenin phospho(P)-Y654 colocalizes with the cytoskeleton at growth cones. However, HGF that also increases axon growth and branching, induces ß-catenin phosphorylation at Y142 and a nuclear localization. Interestingly, dominant negative ΔN-TCF4 abolishes the effects of HGF in axon growth and branching, but not of NT. We conclude that NT and HGF signalling differentially phosphorylate ß-catenin, targeting ß-catenin to distinct compartments to regulate axon morphogenesis by TCF4-transcription-dependent and independent mechanisms. These results place ß-catenin downstream of growth factor/RTK signalling in axon differentiation.
Resumo:
Nucleoside transporters (NTs) mediate the uptake of nucleosides and nucleobases across the plasma membrane, mostly for salvage purposes. The canonical NTs belong to two gene families, SLC29 and SLC28. The former encode equilibrative nucleoside transporter proteins (ENTs), which mediate the facilitative diffusion of natural nucleosides with broad selectivity, whereas the latter encode concentrative nucleoside transporters (CNTs), which are sodium-coupled and show high affinity for substrates with variable selectivity. These proteins are expressed in most cell types, exhibiting apparent functional redundancy. This might indicate that CNTs play specific roles in the physiology of the cell beyond nucleoside salvage. Here, we addressed this possibility using adenoviral vectors to restore tumor cell expression of hCNT1 or a polymorphic variant (hCNT1S546P) lacking nucleoside translocation ability. We found that hCNT1 restoration in pancreatic cancer cells significantly altered cell-cycle progression and phosphorylation status of key signal-transducing kinases, promoted poly-(ADP ribose) polymerase hyperactivation and cell death, and reduced tumor growth and cell migration. Importantly, the translocation-defective transporter triggered these same effects on cell physiology. These data predict a novel and totally unexpected biological role for the nucleoside transporter protein hCNT1 that appears to be independent of its role as mediator of nucleoside uptake by cells, thereby suggesting a transceptor function. Cell Death & Disease Anastasis Stephanou Receiving Editor Cell Death & Disease 19th Apr 2013 Dr Perez-Torras Av/ Diagonal 643. Edif. Prevosti, Pl -1 Barcelona 08028 Spain RE: Manuscript CDDIS-13-0136R, 'CDDIS-13-0136R' Dear Dr Perez-Torras, It is a pleasure to inform you that your manuscript has been evaluated at the editorial level and has now been officially accepted for publication in Cell Death & Disease, pending you meet the following editorial requirements: 1) the list of the abbreviations is missing please include Could you send us the revised text as word file via e-mail and we will proceed and transfer the paper onto our typesetters. Please download, print, sign, and return the Licence to Publish Form using the link below. This must be returned via FAX to ++ 39 06 7259 6977 before your manuscript can be published:
Resumo:
Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage.
Resumo:
Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts.
Resumo:
Background: We use an approach based on Factor Analysis to analyze datasets generated for transcriptional profiling. The method groups samples into biologically relevant categories, and enables the identification of genes and pathways most significantly associated to each phenotypic group, while allowing for the participation of a given gene in more than one cluster. Genes assigned to each cluster are used for the detection of pathways predominantly activated in that cluster by finding statistically significant associated GO terms. We tested the approach with a published dataset of microarray experiments in yeast. Upon validation with the yeast dataset, we applied the technique to a prostate cancer dataset. Results: Two major pathways are shown to be activated in organ-confined, non-metastatic prostate cancer: those regulated by the androgen receptor and by receptor tyrosine kinases. A number of gene markers (HER3, IQGAP2 and POR1) highlighted by the software and related to the later pathway have been validated experimentally a posteriori on independent samples. Conclusion: Using a new microarray analysis tool followed by a posteriori experimental validation of the results, we have confirmed several putative markers of malignancy associated with peptide growth factor signalling in prostate cancer and revealed others, most notably ERRB3 (HER3). Our study suggest that, in primary prostate cancer, HER3, together or not with HER4, rather than in receptor complexes involving HER2, could play an important role in the biology of these tumors. These results provide new evidence for the role of receptor tyrosine kinases in the establishment and progression of prostate cancer.
Resumo:
The growth of breast cancer is regulated by hormones and growth factors. Recently, aberrant fibroblast growth factor (FGF) signalling has been strongly implicated in promoting the progression of breast cancer and is thought to have a role in the development of endocrine resistant disease. FGFs mediate their auto- and paracrine signals through binding to FGF receptors 1-4 (FGFR1-4) and their isoforms. Specific targets of FGFs in breast cancer cells and the differential role of FGFRs, however, are poorly described. FGF-8 is expressed at elevated levels in breast cancer, and it has been shown to act as an angiogenic, growth promoting factor in experimental models of breast cancer. Furthermore, it plays an important role in mediating androgen effects in prostate cancer and in some breast cancer cell lines. We aimed to study testosterone (Te) and FGF-8 regulated genes in Shionogi 115 (S115) breast cancer cells, characterise FGF-8 activated intracellular signalling pathways and clarify the role of FGFR1, -2 and -3 in these cells. Thrombospondin-1 (TSP-1), an endogenous inhibitor of angiogenesis, was recognised as a Te and FGF-8 regulated gene. Te repression of TSP-1 was androgen receptor (AR)-dependent. It required de novo protein synthesis, but it was independent of FGF-8 expression. FGF-8, in turn, downregulated TSP-1 transcription by activating the ERK and PI3K pathways, and the effect could be reversed by specific kinase inhibitors. Differential FGFR1-3 action was studied by silencing each receptor by shRNA expression in S115 cells. FGFR1 expression was a prerequisite for the growth of S115 tumours, whereas FGFR2 expression alone was not able to promote tumour growth. High FGFR1 expression led to a growth advantage that was associated with strong ERK activation, increased angiogenesis and reduced apoptosis, and all of these effects could be reversed by an FGFR inhibitor. Taken together, the results of this thesis show that FGF-8 and FGFRs contribute strongly to the regulation of the growth and angiogenesis of experimental breast cancer and support the evidence for FGF-FGFR signalling as one of the major players in breast cancers.
Resumo:
This study was carried to evaluate the efficiency of the Bitterlich method in growth and yield modeling of the even-aged Eucalyptus stands. 25 plots were setup in Eucalyptus grandis cropped under a high bole system in the Central Western Region of Minas Gerais, Brazil. The sampling points were setup in the center of each plot. The data of four annual mesurements were colleted and used to adjust the three model types using the age, the site index and the basal area as independent variables. The growths models were fitted for volume and mass of trees. The efficiency of the Bitterlich method was confirmed for generating the data for growth and yield modeling.
Resumo:
In general, lodging has been controlled by restricting nitrogen fertilizer application and/or using short cultivars. Growth retardants can also be used to solve this problem.The objective of this study was to evaluate the effect of rates and application times of three growth retardants on Pioneiro wheat cultivar. The trial was carried out in Viçosa-MG, from May to September 2005, in a factorial and hierarchical scheme, in a randomized block design with four replications and a control treatment. The treatments consisted of 500, 1,000 and 1,500 g ha-1 of chlormequat; 62.5, 125 and 187.5 g ha-1 of trinexapac-ethyl and 40, 80 and 120 g ha-1 of paclobutrazol applied at growth stages 6 or 8, growth stage used on the scale of Feeks and Large, and a control treatment without growth retardant application. Only trinexapac-ethyl and chlormequat were efficient in reducing plant height; the effect of chlormequat and paclobutrazol on plant height was independent of the application time, but the trinexapac-ethyl at growth stage 8 produced shorter plant height than at stage 6. Increasing growth retardant rates produced shorter plant heights; chlormequat and paclobutrazol did not affect grain yield. However, the highest trinexapac-ethyl rates reduced wheat yield.
Resumo:
Sorghum, pearl millet, and Brachiaria ruziziensis have similar characteristics which have led to their use for mulch formation in no-till systems. This study was carried out to evaluate the potential of these three species as straw suppliers to suppress weed emergence. Initial findings led to the conclusion that both pearl millet and Brachiaria ruziziensis have similar or superior potential as weed suppressors, compared to sorghum straw, a species with recognized allelopathic potential. Subsequently, new trials were conducted under greenhouse conditions by sowing weed species in pots, followed by covering of the soil with the straw under evaluation. Independent experiments were conducted for Euphorbia heterophylla and Bidens pilosa. In each experiment, the factors analyzed were type of straw (pearl millet and B. ruziziensis), amount of straw (equivalent to 4 and 8 t ha-1 dry mass) and irrigation method (surface and subsurface). Both pearl millet and B. ruziziensis have shown to be species that can be cultivated to produce straw with allelopathic potential. These effects were effective in suppressing the emergence or early growth of E. heterophylla and B. pilosa. There was no difference in the suppression of emergence of these species when the soil cover level was alternated between 4 and 8 t ha-1 dry mass.
Resumo:
This work was carried out with the objective of evaluating the growth and development of honey weed (Leonurus sibiricus) based on days or thermal units (growing degree days). Thus, two independent trials were developed to quantify the phenological development and total dry mass accumulation in increasing or decreasing photoperiod conditions. Considering only one growing season, honey weed phenological development was perfectly fit to day scale or growing degree days, but with no equivalence between seasons, with the plants developing faster at increasing photoperiods, and flowering 100 days after seeding. Even day-time scale or thermal units were not able to estimate general honey weed phenology during the different seasons of the year. In any growing condition, honey weed plants were able to accumulate a total dry mass of over 50 g per plant. Dry mass accumulation was adequately fit to the growing degree days, with highlights to a base temperature of 10 ºC. Therefore, a higher environmental influence on species phenology and a lower environmental influence on growth (dry mass) were observed, showing thereby that other variables, such as the photoperiod, may potentially complement the mathematical models.