1000 resultados para ALOHA (KM1107-11)
Resumo:
We consider a system comprising a finite number of nodes, with infinite packet buffers, that use unslotted ALOHA with Code Division Multiple Access (CDMA) to share a channel for transmitting packetised data. We propose a simple model for packet transmission and retransmission at each node, and show that saturation throughput in this model yields a sufficient condition for the stability of the packet buffers; we interpret this as the capacity of the access method. We calculate and compare the capacities of CDMA-ALOHA (with and without code sharing) and TDMA-ALOHA; we also consider carrier sensing and collision detection versions of these protocols. In each case, saturation throughput can be obtained via analysis pf a continuous time Markov chain. Our results show how saturation throughput degrades with code-sharing. Finally, we also present some simulation results for mean packet delay. Our work is motivated by optical CDMA in which "chips" can be optically generated, and hence the achievable chip rate can exceed the achievable TDMA bit rate which is limited by electronics. Code sharing may be useful in the optical CDMA context as it reduces the number of optical correlators at the receivers. Our throughput results help to quantify by how much the CDMA chip rate should exceed the TDMA bit rate so that CDMA-ALOHA yields better capacity than TDMA-ALOHA.
Resumo:
NaBH4 reduction of a cage dione proceeds in a stereospecific fashion to give the endo,endo-diol. This reactivity is related to the crystal structure.
Resumo:
We focus on the energy spent in radio communication by the stations (STAs) in an IEEE 802.11 infrastructure WLAN. All the STAs are engaged in web browsing, which is characterized by a short file downloads over TCP, with short duration of inactivity or think time in between two file downloads. Under this traffic, Static PSM (SPSM) performs better than CAM, since the STAs in SPSM can switch to low power state (sleep) during think times while in CAM they have to be in the active state all the time. In spite of this gain, performance of SPSM degrades due to congestion, as the number of STAs associated with the access point (AP) increases. To address this problem, we propose an algorithm, which we call opportunistic PSM (OPSM). We show through simulations that OPSM performs better than SPSM under the aforementioned TCP traffic. The performance gain achieved by OPSM over SPSM increases as the mean file size requested by the STAs or the number of STAs associated with the AP increases. We implemented OPSM in NS-2.33, and to compare the performance of OPSM and SPSM, we evaluate the number of file downloads that can be completed with a given battery capacity and the average time taken to download a file.
Resumo:
We consider the simplest IEEE 802.11 WLAN networks for which analytical models are available and seek to provide an experimental validation of these models. Our experiments include the following cases: (i) two nodes with saturated queues, sending fixed-length UDP packets to each other, and (ii) a TCP-controlled transfer between two nodes. Our experiments are based entirely on Aruba AP-70 access points operating under Linux. We report our observations on certain non-standard behavior of the devices. In cases where the devices adhere to the standards, we find that the results from the analytical models estimate the experimental data with a mean error of 3-5%.
Resumo:
We consider a stochastic differential equation (SDE) model of slotted Aloha with the retransmission probability as the associated parameter. We formulate the problem in both (a) the finite horizon and (b) the infinite horizon average cost settings. We apply the algorithm of 3] for the first setting, while for the second, we adapt a related algorithm from 2] that was originally developed in the simulation optimization framework. In the first setting, we obtain an optimal parameter trajectory that prescribes the parameter to use at any given instant while in the second setting, we obtain an optimal time-invariant parameter. Our algorithms are seen to exhibit good performance.
Resumo:
Synthesis and structure of new (Bi, La)(3)MSb(2)O(11) phases (M = Cr, Mn, Fe) are reported in conjunction with their magnetic and photocatalytic properties. XRD refinements reflect that Bi(3)CrSb(2)O(11), Bi(2)LaCrSb(2)O(11), Bi(2)LaMnSb(2)O(11) and Bi(2)LaFeSb(2)O(11) adopt KSbO(3)-type structure (space group, Pn (3) over bar). The structure can be described through three interpenetrating networks where the first is the (M/Sb)O(6) octahedral network and other two are the identical networks having Bi(6)O(4) composition. The magnetic measurements on Bi(2)LaCrSb(2)O(11) and Bi(2)LaMnSb(2)O(11) show paramagnetic behaviour with magnetic moments close to the expected spin only magnetic moments of Cr(+3) and Mn(+3). The UV-Visible diffuse reflectance spectra are broad and indicate that these materials possess a bandgap of similar to 2 eV. The photocatalytic activity of these materials has been investigated by degrading Malachite Green (MG) under exposure to UV light.
Resumo:
Wireless LAN (WLAN) market consists of IEEE 802.11 MAC standard conformant devices (e.g., access points (APs), client adapters) from multiple vendors. Certain third party certifications such as those specified by the Wi-Fi alliance have been widely used by vendors to ensure basic conformance to the 802.11 standard, thus leading to the expectation that the available devices exhibit identical MAC level behavior. In this paper, however, we present what we believe to be the first ever set of experimental results that highlight the fact that WLAN devices from different vendors in the market can have heterogeneous MAC level behavior. Specifically, we demonstrate with examples and data that in certain cases, devices may not be conformant with the 802.11 standard while in other cases, they may differ in significant details that are not a part of mandatory specifications of the standard. We argue that heterogeneous MAC implementations can adversely impact WLAN operations leading to unfair bandwidth allocation, potential break-down of related MAC functionality and difficulties in provisioning the capacity of a WLAN. However, on the positive side, MAC level heterogeneity can be useful in applications such as vendor/model level device fingerprinting.
Resumo:
In many cases, a mobile user has the option of connecting to one of several IEEE 802.11 access points (APs),each using an independent channel. User throughput in each AP is determined by the number of other users as well as the frame size and physical rate being used. We consider the scenario where users could multihome, i.e., split their traffic amongst all the available APs, based on the throughput they obtain and the price charged. Thus, they are involved in a non-cooperative game with each other. We convert the problem into a fluid model and show that under a pricing scheme, which we call the cost price mechanism, the total system throughput is maximized,i.e., the system suffers no loss of efficiency due to selfish dynamics. We also study the case where the Internet Service Provider (ISP) could charge prices greater than that of the cost price mechanism. We show that even in this case multihoming outperforms unihoming, both in terms of throughput as well as profit to the ISP.
Resumo:
In this paper we develop and numerically explore the modeling heuristic of using saturation attempt probabilities as state dependent attempt probabilities in an IEEE 802.11e infrastructure network carrying packet telephone calls and TCP controlled file downloads, using enhanced distributed channel access (EDCA). We build upon the fixed point analysis and performance insights. When there are a certain number of nodes of each class contending for the channel (i.e., have nonempty queues), then their attempt probabilities are taken to be those obtained from saturation analysis for that number of nodes. Then we model the system queue dynamics at the network nodes. With the proposed heuristic, the system evolution at channel slot boundaries becomes a Markov renewal process, and regenerative analysis yields the desired performance measures. The results obtained from this approach match well with ns2 simulations. We find that, with the default IEEE 802.11e EDCA parameters for AC 1 and AC 3, the voice call capacity decreases if even one file download is initiated by some station. Subsequently, reducing the voice calls increases the file download capacity almost linearly (by 1/3 Mbps per voice call for the 11 Mbps PHY)
Resumo:
The bis(amino)hexachlorocyclotetraphosphazenes, 2-trans-6-N4P4 (NHR)2Cl6, R [dbnd] Me, Pr n Pr i , Bu n , CH2Ph, Ph, are obtained from the reaction of N4P4Cl8 with four mol. equivalents of the appropriate amine. Isomers with 2,4-structures have been isolated for R [dbnd] Bu n , CH2Ph. The 1H and 31P NMR spectra of these bis(amino) compounds and of their dimethylamino derivatives, 2-trans-6-N4P4 (NMe2)6 (NHR)2 are discussed.
Resumo:
A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 mu M. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 (E)-2-thioxo-5-({3-(trifluoromethyl)phenyl]furan-2-yl}methylene) thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 +/- 0.3 mu M. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC50) of 1.2 +/- 0.2 mu M and a minimal inhibitory concentration of 3 mu M. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC50 value of 18.1 +/- 0.2,mu M (similar to 15 x IC50 of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.
Resumo:
We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol as standardized in the IEEE 802.11 Distributed Coordination Function (DCF). The approximation is that, when n of the M queues are non-empty, the (transmission) attempt probability of each of the n non-empty nodes is given by the long-term (transmission) attempt probability of n saturated nodes. With the arrival of packets into the M queues according to independent Poisson processes, the SDAR approximation reduces a single cell with non-saturated nodes to a Markovian coupled queueing system. We provide a sufficient condition under which the joint queue length Markov chain is positive recurrent. For the symmetric case of equal arrival rates and finite and equal buffers, we develop an iterative method which leads to accurate predictions for important performance measures such as collision probability, throughput and mean packet delay. We replace the MAC layer with the SDAR model of contention by modifying the NS-2 source code pertaining to the MAC layer, keeping all other layers unchanged. By this model-based simulation technique at the MAC layer, we achieve speed-ups (w.r.t. MAC layer operations) up to 5.4. Through extensive model-based simulations and numerical results, we show that the SDAR model is an accurate model for the DCF MAC protocol in single cells. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
There have been several studies on the performance of TCP controlled transfers over an infrastructure IEEE 802.11 WLAN, assuming perfect channel conditions. In this paper, we develop an analytical model for the throughput of TCP controlled file transfers over the IEEE 802.11 DCF with different packet error probabilities for the stations, accounting for the effect of packet drops on the TCP window. Our analysis proceeds by combining two models: one is an extension of the usual TCP-over-DCF model for an infrastructure WLAN, where the throughput of a station depends on the probability that the head-of-the-line packet at the Access Point belongs to that station; the second is a model for the TCP window process for connections with different drop probabilities. Iterative calculations between these models yields the head-of-the-line probabilities, and then, performance measures such as the throughputs and packet failure probabilities can be derived. We find that, due to MAC layer retransmissions, packet losses are rare even with high channel error probabilities and the stations obtain fair throughputs even when some of them have packet error probabilities as high as 0.1 or 0.2. For some restricted settings we are also able to model tail-drop loss at the AP. Although involving many approximations, the model captures the system behavior quite accurately, as compared with simulations.
Resumo:
The structural and optical properties of semipolar (1 1 -2 2) GaN grown on m-plane (1 0 -1 0) sapphire substrates by molecular beam epitaxy were investigated. An in-plane orientation relationship was found to be 1 -1 0 0] GaN parallel to 1 2-1 0] sapphire and -1 -1 2 3] GaN parallel to 0 0 0 1] sapphire for semipolar GaN on m-plane sapphire substrates. The near band emission (NBE) was found at 3.432 eV, which is slightly blue shifted compared to the bulk GaN. The Raman E-2 (high) peak position observed at 569.1 cm(-1), which indicates that film is compressively strained. Schottky barrier height (phi(b)) and the ideality factor (eta) for the Au/semipolar GaN Schottky diode found to be 0.55 eV and 2.11, respectively obtained from the TE model.