966 resultados para AIR MASS TRAJECTORY ANALYSIS
Resumo:
Innovations in the current interconnected world of organizations have lead to a focus on business models as a fundamental statement of direction and identity. Although industry transformations generally emanate from technological changes, recent examples suggest they may also be due to the introduction of new business models. In the past, different types of airline business models could be clearly separated from each other. However, this has changed in recent years partly due to the concentration process and partly to reaction caused by competitive pressure. At least it can be concluded that in future the distinction of different business models will remain less clear. To advance the use of business models as a concept, it is essential to be able to compare and perform analyses to identify the business models that may have the highest potential. This can essentially contribute to understanding the synergies and incompatibilities in the case of two airlines that are going in for a merger. This is illustrated by the example of Swiss Air-Lufthansa merger analysis. The idea is to develop quantitative methods and tools for comparing and analyzing Aeronautical/Airline business models. The paper identifies available methods of comparing airline business models and lays the ground work for a quantitative model of comparing airline business models. This can be a useful tool for business model analysis when two airlines are merged
Resumo:
Coarse particles of aerodynamic diameter between 2.5 and 10 mm (PMc) are produced by a range of natural (windblown dust and sea sprays) and anthropogenic processes (non-exhaust vehicle emissions, industrial, agriculture, construction and quarrying activities). Although current ambient air quality regulations focus on PM2.5 and PM10, coarse particles are of interest from a public health point of view as they have been associated with certain mortality and morbidity outcomes. In this paper, an analysis of coarse particle levels in three European capitals (London, Madrid and Athens) is presented and discussed. For all three cities we analysed data from both traffic and urban background monitoring sites. The results showed that the levels of coarse particles present significant seasonal, weekly and daily variability. Their wind driven and non-wind driven resuspension as well as their roadside increment due to traffic were estimated. Both the local meteorological conditions and the air mass history indicating long-range atmospheric transport of particles of natural origin are significant parameters that influence the levels of coarse particles in the three cities especially during episodic events.
Resumo:
Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.
Resumo:
Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.
Resumo:
Multi-junction solar cells are widely used in high-concentration photovoltaic systems (HCPV) attaining the highest efficiencies in photovoltaic energy generation. This technology is more dependent on the spectral variations of the impinging Direct Normal Irradiance (DNI) than conventional photovoltaics based on silicon solar cells and consequently demands a deeper knowledge of the solar resource characteristics. This article explores the capabilities of spectral indexes, namely, spectral matching ratios (SMR), to spectrally characterize the annual irradiation reaching a particular location on the Earth and to provide the necessary information for the spectral optimization of a MJ solar cell in that location as a starting point for CPV module spectral tuning. Additionally, the relationship between such indexes and the atmosphere parameters, such as the aerosol optical depth (AOD), precipitable water (PW), and air mass (AM), is discussed using radiative transfer models such as SMARTS to generate the spectrally-resolved DNI. The network of ground-based sun and sky-scanning radiometers AERONET (AErosol RObotic NETwork) is exploited to obtain the atmosphere parameters for a selected bunch of 34 sites worldwide. Finally, the SMR indexes are obtained for every location, and a comparative analysis is carried out for four architectures of triple junction solar cells, covering both lattice match and metamorphic technologies. The differences found among cell technologies are much less significant than among locations.
Resumo:
Sets of RNA ladders can be synthesized by transcription of a bacteriophage-encoded RNA polymerase using 3′-deoxynucleotides as chain terminators. These ladders can be used for sequencing of DNA. Using a nicked form of phage SP6 RNA polymerase in this study substantially enhanced yields of transcriptional sequencing ladders. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of chain-terminated RNA ladders allowed DNA sequence determination of up to 56 nt. It is also demonstrated that A→G and C→T variations in heterozygous and homozygous samples can be unambiguously identified by the mass spectrometric analysis. As a step towards single-tube sequencing reactions, α-thiotriphosphate nucleotide analogs were used to overcome problems caused by chain terminator-independent, premature termination and by the small mass difference between natural pyrimidine nucleotides.
Resumo:
Retinitis pigmentosa (RP) point mutations in both the intradiscal (ID) and transmembrane domains of rhodopsin cause partial or complete misfolding of rhodopsin, resulting in loss of 11-cis-retinal binding. Previous work has shown that misfolding is caused by the formation of a disulfide bond in the ID domain different from the native Cys-110–Cys-187 disulfide bond in native rhodopsin. Here we report on direct identification of the abnormal disulfide bond in misfolded RP mutants in the transmembrane domain by mass spectrometric analysis. This disulfide bond is between Cys-185 and Cys-187, the same as previously identified in misfolded RP mutations in the ID domain. The strategy described here should be generally applicable to identification of disulfide bonds in other integral membrane proteins.
Resumo:
A precise and rapid method for identifying sites of interaction between proteins was demonstrated; the basis of the method is direct mass spectrometric readout from the complex to determine the specific components of the proteins that interact--a method termed affinity-directed mass spectrometry. The strategy was used to define the region of interaction of a protein growth factor with a monoclonal antibody. A combination of proteolytic digestion and affinity-directed mass spectrometry was used to rapidly determine the approximate location of a continuous binding epitope within the growth factor. The precise boundaries of the binding epitope were determined by affinity-directed mass spectrometric analysis of sets of synthetic peptide ladders that span the approximate binding region. In addition to the mapping of such linear epitopes, affinity-directed mass spectrometry can be applied to the mapping of other types of molecule-molecule contacts, including ligand-receptor and protein-oligonucleotide interactions.
Resumo:
We studied the global and local ℳ-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2−3 effective radii), with a resolution high enough to separate individual H II regions and/or aggregations. About 3000 individual H II regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise ratio to derive the oxygen abundance and star-formation rate associated with each region. In addition, we computed the integrated and spatially resolved stellar masses (and surface densities) based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion lower than the one already reported in the literature (σ_Δlog (O/H) = 0.07 dex). Indeed, this dispersion is only slightly higher than the typical error derived for our oxygen abundances. However, we found no secondary relation with the star-formation rate other than the one induced by the primary relation of this quantity with the stellar mass. The analysis for our sample of ~3000 individual H II regions confirms (i) a local mass-metallicity relation and (ii) the lack of a secondary relation with the star-formation rate. The same analysis was performed with similar results for the specific star-formation rate. Our results agree with the scenario in which gas recycling in galaxies, both locally and globally, is much faster than other typical timescales, such like that of gas accretion by inflow and/or metal loss due to outflows. In essence, late-type/disk-dominated galaxies seem to be in a quasi-steady situation, with a behavior similar to the one expected from an instantaneous recycling/closed-box model.
Resumo:
"Contract no. DA44-177-TC-550."
Resumo:
Oxidation and S-nitrosylation of cysteinyl thiols (Cys-SH) to sulfenic (Cys-SOH), sulfinic (Cys-SO2H), sulfonic acids (Cys-SO3H), disulphides and S-nitrosothiols are suggested as important post-translational modifications that can activate or deactivate the function of many proteins. Non-enzymatic post-translational modifications to cysteinyl thiols have been implicated in a wide variety of physiological and pathophysiological states but have been difficult to monitor in a physiological setting because of a lack of experimental tools. The purpose of this review is to bring together the approaches that have been developed for stably trapping cysteine either in its reduced or oxidised forms for enrichment and or subsequent mass spectrometric analysis. These tools are providing insight into potential targets for post-translational modifications to cysteine modification in vivo. This article is part of a Special Issue entitled: Special Issue: Posttranslational Protein modifications in biology and Medicine. © 2013.