934 resultados para AFLP - Age structure
Resumo:
Background Early feeding practices lay the foundation for children’s eating habits and weight gain. Questionnaires are available to assess parental feeding but overlapping and inconsistent items, subscales and terminology limit conceptual clarity and between study comparisons. Our aim was to consolidate a range of existing items into a parsimonious and conceptually robust questionnaire for assessing feeding practices with very young children (<3 years). Methods Data were from 462 mothers and children (age 21–27 months) from the NOURISH trial. Items from five questionnaires and two study-specific items were submitted to a priori item selection, allocation and verification, before theoretically-derived factors were tested using Confirmatory Factor Analysis. Construct validity of the new factors was examined by correlating these with child eating behaviours and weight. Results Following expert review 10 factors were specified. Of these, 9 factors (40 items) showed acceptable model fit and internal reliability (Cronbach’s α: 0.61-0.89). Four factors reflected non-responsive feeding practices: ‘Distrust in Appetite’, ‘Reward for Behaviour’, ‘Reward for Eating’, and ‘Persuasive Feeding’. Five factors reflected structure of the meal environment and limits: ‘Structured Meal Setting’, ‘Structured Meal Timing’, ‘Family Meal Setting’, ‘Overt Restriction’ and ‘Covert Restriction’. Feeding practices generally showed the expected pattern of associations with child eating behaviours but none with weight. Conclusion The Feeding Practices and Structure Questionnaire (FPSQ) provides a new reliable and valid measure of parental feeding practices, specifically maternal responsiveness to children’s hunger/satiety signals facilitated by routine and structure in feeding. Further validation in more diverse samples is required.
Resumo:
This research project investigated the influence of family transitions on children's adjustment and school achievement across the primary school years, in single-parent, re-partnered and two-parent families. The quality of children's relationships with parents, teachers and peers were predictive of more positive outcomes, regardless of family structure. The research analysed data from the Kindergarten Cohort participating in Growing Up in Australia: The Longitudinal Study of Australian Children. Across the age span of the children studied, cumulative effects of any residential or school changes, or decreased family income, associated with family transitions, were more likely to predict poorer child outcomes in behaviour adjustment and school achievement.
Resumo:
Population genetic studies of freshwater invertebrate taxa in New Zealand and South America are currently few despite the geologically and climatically dynamic histories of these regions. The focus of our study was a comparison of the influence on realized dispersal of 2 closely related nonbiting midges (Chironomidae) of population fragmentation on these separated austral land masses. We used a 734-base pair (bp) fragment of cytochrome c oxidase subunit I (COI) to investigate intraspecific genetic structure in Naonella forsythi Boothroyd in New Zealand and Ferringtonia patagonica Edwards in Patagonia. We proposed hypotheses about their potential dispersal and, hence, expected patterns of genetic structure in these 2 species based on published patterns for the closely related Australian taxon Echinocladius martini Cranston. Genetic structure revealed for both N. forsythi and F. patagonica was characterized by several highly divergent (2.0–10.5%) lineages of late Miocene–Pliocene age within each taxon that were not geographically localized. Many were distributed widely. This pattern differed greatly from population structure in E. martini, which was typified by much greater endemicity of divergent genetic lineages. Nevertheless, diversification of lineages in all 3 taxa appeared to be temporally congruent with the onset of late Miocene glaciations in the southern hemisphere that may have driven fragmentation of suitable habitat, promoting isolation of populations and divergence in allopatry. We argue that differences in realized dispersal post-isolation may be the result of differing availability of suitable habitat in interglacial periods.
Resumo:
Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.
Resumo:
Despite substantial progress in measuring the anatomical and functional variability of the human brain, little is known about the genetic and environmental causes of these variations. Here we developed an automated system to visualize genetic and environmental effects on brain structure in large brain MRI databases. We applied our multi-template segmentation approach termed "Multi-Atlas Fluid Image Alignment" to fluidly propagate hand-labeled parameterized surface meshes, labeling the lateral ventricles, in 3D volumetric MRI scans of 76 identical (monozygotic, MZ) twins (38 pairs; mean age = 24.6 (SD = 1.7)); and 56 same-sex fraternal (dizygotic, DZ) twins (28 pairs; mean age = 23.0 (SD = 1.8)), scanned as part of a 5-year research study that will eventually study over 1000 subjects. Mesh surfaces were averaged within subjects to minimize segmentation error. We fitted quantitative genetic models at each of 30,000 surface points to measure the proportion of shape variance attributable to (1) genetic differences among subjects, (2) environmental influences unique to each individual, and (3) shared environmental effects. Surface-based statistical maps, derived from path analysis, revealed patterns of heritability, and their significance, in 3D. Path coefficients for the 'ACE' model that best fitted the data indicated significant contributions from genetic factors (A = 7.3%), common environment (C = 38.9%) and unique environment (E = 53.8%) to lateral ventricular volume. Earlier-maturing occipital horn regions may also be more genetically influenced than later-maturing frontal regions. Maps visualized spatially-varying profiles of environmental versus genetic influences. The approach shows promise for automatically measuring gene-environment effects in large image databases.
Resumo:
We implemented least absolute shrinkage and selection operator (LASSO) regression to evaluate gene effects in genome-wide association studies (GWAS) of brain images, using an MRI-derived temporal lobe volume measure from 729 subjects scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Sparse groups of SNPs in individual genes were selected by LASSO, which identifies efficient sets of variants influencing the data. These SNPs were considered jointly when assessing their association with neuroimaging measures. We discovered 22 genes that passed genome-wide significance for influencing temporal lobe volume. This was a substantially greater number of significant genes compared to those found with standard, univariate GWAS. These top genes are all expressed in the brain and include genes previously related to brain function or neuropsychiatric disorders such as MACROD2, SORCS2, GRIN2B, MAGI2, NPAS3, CLSTN2, GABRG3, NRXN3, PRKAG2, GAS7, RBFOX1, ADARB2, CHD4, and CDH13. The top genes we identified with this method also displayed significant and widespread post hoc effects on voxelwise, tensor-based morphometry (TBM) maps of the temporal lobes. The most significantly associated gene was an autism susceptibility gene known as MACROD2.We were able to successfully replicate the effect of the MACROD2 gene in an independent cohort of 564 young, Australian healthy adult twins and siblings scanned with MRI (mean age: 23.8±2.2 SD years). Our approach powerfully complements univariate techniques in detecting influences of genes on the living brain.
Resumo:
Objective To test the hypothesis that the age at onset of bipolar disorder would identify a developmental subtype of bipolar disorder in adults characterized by increased levels of irritability, chronic course, rapid cycling, and comorbidity with attention deficit hyperactivity disorder. Methods Forty-four adult subjects diagnosed with bipolar disorder were selected from large family studies of youth with and without attention deficit hyperactivity disorder. These subjects were stratified by the age at onset in childhood (younger than 13 years; n = 8, 18%), adolescence (13–18 years; n = 12, 27%, or adulthood (older than 19 years; n = 24, 55%). All subjects were administered structure diagnostic interviews and a brief cognitive battery. Results In contrast with adult-onset bipolar disorder, child-onset bipolar disorder was associated with a longer duration of illness, more irritability than euphoria, a mixed presentation, a more chronic or rapid-cycling course, and increased comorbidity with childhood disruptive behavior disorders and anxiety disorders. Conclusion Stratification by age at onset of bipolar disorder identified subgroups of adult subjects with differing clinical correlates. This pattern of correlates is consistent with findings documented in children with pediatric bipolar disorder and supports the hypothesis that child-onset bipolar disorder may represent a developmental subtype of the disorder.
Resumo:
An investigation to characterize the causes of Pinna nobilis population structure in Moraira bay (Western Mediterranean) was developed. Individuals of two areas of the same Posidonia meadow, located at different depths (A1, -13 and A2, -6 m), were inventoried, tagged, their positions accurately recorded and monitored from July 1997 to July 2002. On each area, different aspects of population demography were studied (i.e. spatial distribution, size structure, displacement evidences, mortality, growth and shell orientation). A comparison between both groups of individuals was carried out, finding important differences between them. In A1, the individuals were more aggregated and mean and maximum size were higher (A1, 10.3 and A2, 6 individuals/100 m(2); A1, x = 47.2 +/- 9.9; A2, x = 29.8 +/- 7.4 cm, P < 0.001, respectively). In A2, growth rate and mortality were higher, the latter concentrated on the largest individuals, in contrast to A1, where the smallest individuals had the higher mortality rate [A1, L = 56.03(1 - e(-0.17t)); A2, L = 37.59(1 - e(-0.40t)), P < 0.001; mean annual mortality A1: 32 dead individuals out of 135, 23.7% and A2: 16 dead individuals out of 36, 44.4%, and total mortality coefficients (z), z(A1(-30)) = 0.28, z(A1(31-45)) = 0.05, z(A1(46-)) = 0.08; z(A2(-30)) = 0.15, z(A2(31-45)) = 0.25]. A common shell orientation N-S, coincident with the maximum shore exposure, was observed in A2. Spatial distribution in both areas showed not enough evidence to discard a random distribution of the individuals, despite the greater aggregation on the deeper area (A1) (A1, chi(2) = 0.41, df = 3, P > 0.5, A2, chi(2)= 0.98, df = 2 and 0.3 < P < 0.5). The obtained results have demonstrated that the depth-related size segregation usually shown by P. nobilis is mainly caused by differences in mortality and growth among individuals located at different depths, rather than by the active displacement of individuals previously reported in the literature. Furthermore, dwarf individuals are observed in shallower levels and as a consequence, the relationship between size and age are not comparable even among groups of individuals inhabiting the same meadow at different depths. The final causes of the differences on mortality and growth are also discussed.
Resumo:
Objective This study explored the dimensionality and measurement invariance of the 25-item Connor-Davidson Resilience Scale (CD-RISC; Connor & Davidson, 2003) across samples of adult (n = 321; aged 20–36) and adolescent (n = 199; aged 12–18) Australian cricketers. Design Cross-sectional, self-report survey Methods An online, multi-section questionnaire. Results Confirmatory factor and item level analyses supported the psychometric superiority of a revised 10-item, unidimensional model of resilience over the original 25-item, five-factor measurement model. Positive and moderate correlations with hardiness as well as negative and moderate correlations with burnout components were evidenced thereby providing support for the convergent validity of the unidimensional model. Measurement invariance analyses of the unidimensional model across the two age-group samples supported configural (i.e., same factor structure across groups), metric (i.e., same pattern of factor loadings across the groups), and partial scalar invariance (i.e., mostly the same intercepts across the groups). Conclusion Evidence for a psychometrically sound measure of resilient qualities of the individual provides an important foundation upon which researchers can identify the antecedents to and outcomes of resilience in sport contexts.
Resumo:
An important challenge in forest industry is to get the appropriate raw material out from the forests to the wood processing industry. Growth and stem reconstruction simulators are therefore increasingly integrated in industrial conversion simulators, for linking the properties of wooden products to the three-dimensional structure of stems and their growing conditions. Static simulators predict the wood properties from stem dimensions at the end of a growth simulation period, whereas in dynamic approaches, the structural components, e.g. branches, are incremented along with the growth processes. The dynamic approach can be applied to stem reconstruction by predicting the three-dimensional stem structure from external tree variables (i.e. age, height) as a result of growth to the current state. In this study, a dynamic growth simulator, PipeQual, and a stem reconstruction simulator, RetroSTEM, are adapted to Norway spruce (Picea abies [L.] Karst.) to predict the three-dimensional structure of stems (tapers, branchiness, wood basic density) over time such that both simulators can be integrated in a sawing simulator. The parameterisation of the PipeQual and RetroSTEM simulators for Norway spruce relied on the theoretically based description of tree structure developing in the growth process and following certain conservative structural regularities while allowing for plasticity in the crown development. The crown expressed both regularity and plasticity in its development, as the vertical foliage density peaked regularly at about 5 m from the stem apex, varying below that with tree age and dominance position (Study I). Conservative stem structure was characterized in terms of (1) the pipe ratios between foliage mass and branch and stem cross-sectional areas at crown base, (2) the allometric relationship between foliage mass and crown length, (3) mean branch length relative to crown length and (4) form coefficients in branches and stem (Study II). The pipe ratio between branch and stem cross-sectional area at crown base, and mean branch length relative to the crown length may differ in trees before and after canopy closure, but the variation should be further analysed in stands of different ages and densities with varying site fertilities and climates. The predictions of the PipeQual and RetroSTEM simulators were evaluated by comparing the simulated values to measured ones (Study III, IV). Both simulators predicted stem taper and branch diameter at the individual tree level with a small bias. RetroSTEM predictions of wood density were accurate. For focusing on even more accurate predictions of stem diameters and branchiness along the stem, both simulators should be further improved by revising the following aspects in the simulators: the relationship between foliage and stem sapwood area in the upper stem, the error source in branch sizes, the crown base development and the height growth models in RetroSTEM. In Study V, the RetroSTEM simulator was integrated in the InnoSIM sawing simulator, and according to the pilot simulations, this turned out to be an efficient tool for readily producing stand scale information about stem sizes and structure when approximating the available assortments of wood products.
Resumo:
Understanding the life history of exploited fish species is not only critical in developing stock assessments and productivity models, but has a dual function in the delineation of connectivity and geographical population structure. In this study, patterns in growth and length and age at sex change of Polydactylus macrochir, an ecologically and economically important protandrous estuarine teleost, were examined to provide preliminary information on the species' connectivity and geographic structure across northern Australia. Considerable variation in life history parameters was observed among the 18 locations sampled. Both unconstrained and constrained (t(0) = 0) estimates of von Bertalanffy growth function parameters differed significantly among all neighbouring locations with the exception of two locations in Queensland's east coast and two in Queensland's Gulf of Carpentaria waters, respectively. Comparisons of back-calculated length-at-age 2 provided additional evidence for growth differences among some locations, but were not significantly different among locations in the south-eastern Gulf of Carpentaria or on Queensland's east coast. The length and age at sex change differed markedly among locations, with fish from the east coast of Australia changing sex from males to females at significantly greater lengths and ages than elsewhere. Sex change occurred earliest at locations within Queensland's Gulf of Carpentaria, where a large proportion of small, young females were recorded. The observed differences suggest that P. macrochir likely form a number of geographically and/or reproductively distinct groups in Australian waters and suggest that future studies examining connectivity and geographic population structure of estuarine fishes will likely benefit from the inclusion of comparisons of life history parameters. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Common root rot (CRR) and spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dast., are important diseases of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) worldwide. However, the population biology of C. sativus is still poorly understood. In this study, the genetic structure of three C. sativus populations, consisting of isolates sampled respectively from barley leaves (BL), barley roots (BR) and wheat roots (WR) in North Dakota, was analysed with amplified fragment length polymorphism (AFLP) markers. A total of 127 AFLP loci were generated among 208 C. sativus isolates analysed with three primer combinations. Gene diversity (H = 0.277-0.335) were high in all three populations. Genetic variation among C. sativus individuals within population accounted for 74%, whereas 26% of the genetic variation was explained among populations. Genetic differentiation was high (empty set PT = 0.261, corrected G ''(st)= 0.39), whereas gene flow (Nm) ranged from 1.27 to 1.56 among the three populations analysed. The multilocus linkage disequilibrium (LD) ((r) over bard = 0.0760.117) was moderate in C. sativus populations. Cluster analyses indicate that C. sativus populations differentiated according to the hosts (barley and wheat) and tissues (root and leaf) although generalists also exist in North Dakota. Crop breeding may benefit from combining genes for resistance against both specialists and generalists of C. sativus.
Resumo:
Spring barley is the most important crop in Finland based on cultivated land area. Net blotch, a disease caused by Pyrenophora teres Drech., is the most damaging disease of barley in Finland. The pressure to improve the economics and efficiency of agriculture has increased the need for more efficient plant protection methods. Development of durable host-plant resistance to net blotch is a promising possibility. However, deployment of disease resistant crops could initiate selection pressure on the pathogen (P. teres) population. The aim of this study was to understand the population biology of P. teres and to estimate the evolutionary potential of P. teres under selective pressure following deployment of resistance genes and application of fungicides. The study included mainly Finnish P. teres isolates. Population samples from Russia and Australia were also included. Using AFLP markers substantial genotypic variation in P. teres populations was identified. Differences among isolates were least within Finnish fields and significantly higher in Krasnodar, Russia. Genetic differentiation was identified among populations from northern Europe and from Australia, and between the two forms P. teres f. teres (PTT, net form of net blotch) and P. teres f. maculata (PTM, spot form of net blotch) in Australia. Differentiation among populations was also identified based on virulence between Finnish and Russian populations, and based on prochloraz (fungicide) tolerance in the Häme region in Finland. Surprisingly only PTT was recovered from Finland and Russia although both forms were earlier equally common in Finland. The reason for the shift in occurrence of forms in Finland remained uncertain. Both forms were found within several fields in Australia. Sexual reproduction of P. teres was supported by recover of both mating types in equal ratio in those areas although the prevalence of sexual mating seems to be less in Finland than in Australia. Population from Krasnodar was an exception since only one mating type was found in there. Based on the substantial high genotypic variation in Krasnodar it was suggested go represent an old P. teres population, whereas the Australian samples were suggested to represent newer populations. In conclusion, P. teres populations are differentiated at several levels. Human assistance in dispersal of P. teres on infected barley seed is obvious and decreases the differentiation among populations. This can increase the plant protection problems caused by this pathogen. P. teres is capable of sexual reproduction in several areas but the prevalence varies. Based on these findings it is apparent that P. teres has the potential to pose more serious problems in barley cultivation if plant protection is neglected. Therefore, good agricultural practices, including crop rotation and the use of healthy seed, are recommended.
Resumo:
Preputial prolapse is an obvious condition affecting bulls from many breeds. Unfortunately, the losses in production and welfare concerns associated with preputial prolapse can remain undetected for long periods of time in the extensive beef areas of northern Australia where the bulls are not inspected regularly. Thus, there is a critical need to identify the structural factors predisposing to preputial prolapse in young bulls so that they can be culled early. Despite there being no firm scientific evidence of an association between preputial eversion and preputial prolapse, it seems logical that the increased exposure of the sensitive prepuce as a consequence of preputial eversion may increase the risk of bulls developing preputial pathology, in particular preputial prolapse. This may be particularly relevant in Bos indicus bulls as they have a more pendulous sheath and thus eversion of the prepuce may be associated with a greater risk of injury to the prepuce compared to that in Bos taurus bulls. Further, studies of preputial eversion in Bos taurus bulls have concluded that there is an association between polledness and increased prevalence and severity (length of everted prepuce and duration of eversion) of preputial eversion due primarily to the absence or poor development of the caudal preputial muscles. No similar definitive work in Bos indicus bulls has been conducted and thus anatomical studies reported in this thesis were conducted to determine if a similar association occurred in Bos indicus bulls. A survey of a sample of large beef breeding herds in northern Australia found that preputial prolapse is a significant problem in Bos indicus and Bos indicus derived bulls and affected both young and older bulls. The importance of preputial prolapse confirmed the value of further research into the causes of this problem. A series of anatomical studies confirmed that preputial eversion in Bos indicus derived bulls was not more prevalent in polled bulls than horned bulls and was not associated with deficiency of the caudal preputial muscles as was established in Bos taurus bulls. An anatomical study of Bos indicus derived bulls with preputial prolapse found that preputial prolapse occurred in horned bulls of varying ages and these bulls did not have any evidence of deficiency in the caudal preputial muscles. However, preputial prolapse was observed in young polled bulls that had poorly developed or absent caudal preputial muscles. It was concluded that deficiency of the caudal preputial muscles in polled Bos indicus derived bulls may predispose to preputial prolapse at an early age, but no predisposing anatomical factors were found for horned Bos indicus derived bulls. In these studies, preputial eversion and preputial prolapse were found in horned Bos indicus derived bulls that did not have any preputial muscle deficiency and it was noted that preputial eversion was not related to the length of the prepuce. Further studies confirmed that preputial eversion was linearly and consistently associated with position of the glans penis within the sheath in Bos indicus derived bulls, and movement of the glans penis towards the preputial orifice consistently resulted in preputial eversion in these bulls. A method to objectively measure the relationship between movement of the glans penis within the sheath and preputial eversion was developed. Studies in humans have linked function of some abdominal muscles to function of the pelvic organs. This relationship was investigated in Bos indicus derived bulls to determine whether the function of specific abdominal muscles affected position of the penis in the sheath. Using the method developed to objectively measure the relationship between penis movement and preputial eversion, the abdominal muscles that potentially were associated with movement of the glans penis or preputial eversion were examined but no significant relationships were observed. In the anatomical study of Bos indicus derived bulls not affected with preputial prolapse a more pendulous sheath was associated with increased prevalence of preputial eversion. This relationship was confirmed for horned and polled bulls in the penis movement studies. Bos indicus derived bulls with more pendulous sheaths evert their prepuces more than bulls with less pendulous sheaths thus increasing the risk of damage to the prepuce either from the environment, other bulls, or from them inadvertently stepping on the everted prepuce when they get to their feet. Culling Bos indicus derived bulls with more pendulous sheaths should reduce the incidence of preputial eversion and possibly preputial prolapse. The anatomical study of Bos indicus derived bulls that did not have preputial prolapse demonstrates that there are herds of bulls where the polled bulls do not have any evidence of deficiency of the caudal preputial iv muscles. There is a need to develop a practical and cost effective test to identify polled Bos indicus bulls that have a deficiency in their caudal preputial muscles.
Resumo:
Life history characteristics were used to determine the stock structure of the polynemid Eleutheronema tetradactylum across northern Australia. Growth, estimated from back-calculated length-at-age from sagittal otoliths, and length at sex change were estimated from samples collected from 12 different locations across western, northern and eastern Australia between 2007 and 2009. Comparison of back-calculated length-at-age, growth and length at sex change between locations revealed significant variation in the life-history characteristics of E. tetradactylum across northern Australia, with significant differences detected in 43 of 45 location comparisons. Differences in otolith size relative to fish length also existed amongst locations. No differences in other morphometric relationships were detected. The results of this study provide evidence for a high degree of spatial population subdivision for E. tetradactylum across northern Australia, the finding of which has implications for E. tetradactylum fisheries throughout its range, and provides a biological basis for spatial management of the species in Australia. (C) 2012 Elsevier B.V. All rights reserved.