961 resultados para AEROBIC GLYCOLYSIS
Resumo:
We determined the effect of long-term aerobic swimming training regimens of different intensities on colonic carcinogenesis in rats. Male Wistar rats (11 weeks old) were given 4 subcutaneous injections (40 mg/kg body weight each) of 1,2-dimethyl-hydrazine (DMH, dissolved in 0.9% NaCl containing 1.5% EDTA, pH 6.5), at 3-day intervals and divided into three exercise groups that swam with 0% body weight (EG1, N = 11), 2% body weight (EG2, N = 11), and 4% body weight of load (EG3, N = 10), 20 min/day, 5 days/week for 35 weeks, and one sedentary control group (CG, N = 10). At sacrifice, the colon was removed and counted for tumors and aberrant crypt foci. Tumor size was measured and intra-abdominal fat was weighed. The mean number of aberrant crypt foci was reduced only for EG2 compared to CG (26.21 ± 2.99 vs 36.40 ± 1.53 crypts; P < 0.05). Tumor incidence was not significantly different among groups (CG: 90%; EG1: 72.7%; EG2: 90%; EG3: 80%). Swimming training did not affect either tumor multiplicity (CG: 2.30 ± 0.58; EG1: 2.09 ± 0.44; EG2: 1.27 ± 0.19; EG3: 1.50 ± 0.48 tumors) or size (CG: 1.78 ± 0.24; EG1: 1.81 ± 0.14; EG2: 1.55 ± 0.21; EG3: 2.17 ± 0.22 cm³). Intra-abdominal fat was not significantly different among groups (CG: 10.54 ± 2.73; EG1: 6.12 ± 1.15; EG2: 7.85 ± 1.24; EG3: 5.11 ± 0.74 g). Aerobic swimming training with 2% body weight of load protected against the DMH-induced preneoplastic colon lesions, but not against tumor development in the rat.
Resumo:
The effect of physical exercise on the treatment of depressive elderly adults has not been investigated thus far in terms of changes in cortical hemispheric activity. The objective of the present study was to identify changes in depressive symptoms, quality of life, and cortical asymmetry produced by aerobic activity. Elderly subjects with a diagnosis of major depressive disorder (DSM-IV) were included. Twenty patients (70% females, 71 ± 3 years) were divided into an exercise group (pharmacological treatment plus aerobic training) and a control group (undergoing pharmacological treatment) in a quasi-experimental design. Pharmacological treatment was maintained stable throughout the study (antidepressants and anxiolytics). Subjects were evaluated by depression scales (Beck Depression Inventory, Hamilton Depression Rating Scale, Montgomery-Asberg Depression Rating Scale) and the Short Form Health Survey-36, and electroencephalographic measurements (frontal and parietal alpha asymmetry) before and after 1 year of treatment. After 1 year, the control group showed a decrease in cortical activity on the right hemisphere (increase of alpha power), which was not observed in the exercise group. The exercise group showed a significant decrease of depressive symptoms, which was not observed in the control group. This result was also accompanied by improved treatment response and remission rate after 1 year of aerobic exercise associated with treatment. This study provides support for the effect of aerobic training on alpha activity and on depressive symptoms in elderly patients. Exercise facilitates the treatment of depressive elderly adults, leading to clinical and physical improvement and protecting against a decrease in cortical activity.
Resumo:
Heart failure is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. Chronic neurohumoral excitation (i.e., sympathetic hyperactivity) has been considered to be a hallmark of heart failure and is associated with a poor prognosis, cardiac dysfunction and remodeling, and skeletal myopathy. Aerobic exercise training is efficient in counteracting sympathetic hyperactivity and its toxic effects on cardiac and skeletal muscles. In this review, we describe the effects of aerobic exercise training on sympathetic hyperactivity, skeletal myopathy, as well as cardiac function and remodeling in human and animal heart failure. We also discuss the mechanisms underlying the effects of aerobic exercise training.
Resumo:
The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.
Resumo:
Resistance training increases muscle strength in older adults, decreasing the effort necessary for executing physical tasks, and reducing cardiovascular load during exercise. This hypothesis has been confirmed during strength-based activities, but not during aerobic-based activities. This study determined whether different resistance training regimens, strength training (ST, constant movement velocity) or power training (PT, concentric phase performed as fast as possible) can blunt the increase in cardiovascular load during an aerobic stimulus. Older adults (63.9 ± 0.7 years) were randomly allocated to: control (N = 11), ST (N = 13, twice a week, 70-90% 1-RM) and PT (N = 15, twice a week, 30-50% 1-RM) groups. Before and after 16 weeks, oxygen uptake (VO2), systolic blood pressure (SBP), heart rate (HR), and rate pressure product (RPP) were measured during a maximal treadmill test. Resting SBP and RPP were similarly reduced in all groups (combined data = -5.7 ± 1.2 and -5.0 ± 1.7%, respectively, P < 0.05). Maximal SBP, HR and RPP did not change. The increase in measured VO2, HR and RPP for the increment in estimated VO2 (absolute load) decreased similarly in all groups (combined data = -9.1 ± 2.6, -14.1 ± 3.9, -14.2 ± 3.0%, respectively, P < 0.05), while the increments in the cardiovascular variables for the increase in measured VO2 did not change. In elderly subjects, ST and PT did not blunt submaximal or maximal HR, SBP and RPP increases during the maximal exercise test, showing that they did not reduce cardiovascular stress during aerobic tasks.
Resumo:
The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity.
Resumo:
Due to differences in study populations and protocols, the hemodynamic determinants of post-aerobic exercise hypotension (PAEH) are controversial. This review analyzed the factors that might influence PAEH hemodynamic determinants, through a search on PubMed using the following key words: “postexercise” or “post-exercise” combined with “hypotension”, “blood pressure”, “cardiac output”, and “peripheral vascular resistance”, and “aerobic exercise” combined only with “blood pressure”. Forty-seven studies were selected, and the following characteristics were analyzed: age, gender, training status, body mass index status, blood pressure status, exercise intensity, duration and mode (continuous or interval), time of day, and recovery position. Data analysis showed that 1) most postexercise hypotension cases are due to a reduction in systemic vascular resistance; 2) age, body mass index, and blood pressure status influence postexercise hemodynamics, favoring cardiac output decrease in elderly, overweight, and hypertensive subjects; 3) gender and training status do not have an isolated influence; 4) exercise duration, intensity, and mode also do not affect postexercise hemodynamics; 5) time of day might have an influence, but more data are needed; and 6) recovery in the supine position facilitates systemic vascular resistance decrease. In conclusion, many factors may influence postexercise hypotension hemodynamics, and future studies should directly address these specific influences because different combinations may explain the observed variability in postexercise hemodynamic studies.
Resumo:
Nitric oxide (NO) is a soluble gas that participates in important functions of the central nervous system, such as cognitive function, maintenance of synaptic plasticity for the control of sleep, appetite, body temperature, neurosecretion, and antinociception. Furthermore, during exercise large amounts of NO are released that contribute to maintaining body homeostasis. Besides NO production, physical exercise has been shown to induce antinociception. Thus, the present study aimed to investigate the central involvement of NO in exercise-induced antinociception. In both mechanical and thermal nociceptive tests, central [intrathecal (it) and intracerebroventricular (icv)] pretreatment with inhibitors of the NO/cGMP/KATP pathway (L-NOArg, ODQ, and glybenclamide) prevented the antinociceptive effect induced by aerobic exercise (AE). Furthermore, pretreatment (it, icv) with specific NO synthase inhibitors (L-NIO, aminoguanidine, and L-NPA) also prevented this effect. Supporting the hypothesis of the central involvement of NO in exercise-induced antinociception, nitrite levels in the cerebrospinal fluid increased immediately after AE. Therefore, the present study suggests that, during exercise, the NO released centrally induced antinociception.
Resumo:
Exercise training (Ex) has been recommended for its beneficial effects in hypertensive states. The present study evaluated the time-course effects of Ex without workload on mean arterial pressure (MAP), reflex bradycardia, cardiac and renal histology, and oxidative stress in two-kidney, one-clip (2K1C) hypertensive rats. Male Fischer rats (10 weeks old; 150–180 g) underwent surgery (2K1C or SHAM) and were subsequently divided into a sedentary (SED) group and Ex group (swimming 1 h/day, 5 days/week for 2, 4, 6, 8, or 10 weeks). Until week 4, Ex decreased MAP, increased reflex bradycardia, prevented concentric hypertrophy, reduced collagen deposition in the myocardium and kidneys, decreased the level of thiobarbituric acid-reactive substances (TBARS) in the left ventricle, and increased the catalase (CAT) activity in the left ventricle and both kidneys. From week 6 to week 10, however, MAP and reflex bradycardia in 2K1C Ex rats became similar to those in 2K1C SED rats. Ex effectively reduced heart rate and prevented collagen deposition in the heart and both kidneys up to week 10, and restored the level of TBARS in the left ventricle and clipped kidney and the CAT activity in both kidneys until week 8. Ex without workload for 10 weeks in 2K1C rats provided distinct beneficial effects. The early effects of Ex on cardiovascular function included reversing MAP and reflex bradycardia. The later effects of Ex included preventing structural alterations in the heart and kidney by decreasing oxidative stress and reducing injuries in these organs during hypertension.
Resumo:
Validation ofan Ice Skating Protocol to Predict Aerobic Power in Hockey Players In assessing the physiological capacity of ice hockey players, researchers have often reported the outcomes from different anaerobic skate tests, and the general physical fitness of participants. However, with respect to measuring the aerobic power of ice hockey players, few studies have reported a sport-specific protocol, and currently there is a lack of cohort-specific information describing aerobic power based on evaluations using an on-ice protocol. The Faught Aerobic Skating Test (FAST) uses an on-ice continuous skating protocol to induce a physical stress on a participant's aerobic energy system. The FAST incorporates the principle of increasing workloads at measured time intervals during a continuous skating exercise. Regression analysis was used to determine the estimate of aerobic power within gender and age level. Data were collected on 532 hockey players, (males=384, females=148) ranging in age between 9 and 25 years. Participants completed a laboratory test to measure aerobic power using a modified Bruce protocol, and the on-ice FAST. Regression equations were developed for six male and female, age-specific cohorts separately. The most consistent predictors were weight and final stage completed on the FAST. These results support the application of the FAST to estimate aerobic power among hockey players with R^ values ranging from 0.174 to 0.396 and SEE ranging from 5.65 to 8.58 ml kg' min'' depending on the cohort. Thus we conclude that FAST to be an accurate predictor of aerobic power in age and gender-specific hockey playing cohorts.
Resumo:
The allometric scaling relationship observed between metabolic rate (MR) and species body mass can be partially explained by differences in cellular MR (Porter & Brand, 1995). Here, I studied cultured cell lines derived from ten mammalian species to determine whether cells propagated in an identical environment exhibited MR scaling. Oxidative and anaerobic metabolic parameters did not scale significantly with donor body mass in cultured cells, indicating the absence of an intrinsic MR setpoint. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms (West et al., 2002). As such cells were cultured under a variety of physiologically relevant oxygen tensions to investigate the effect of oxygen on cellular metabolic rates. Exposure to higher medium oxygen tensions resulted in increased metabolic rates in all cells. Higher MRs have the potential to produce more reactive oxygen species (ROS) which could cause genomic instability and thus reduced lifespan. Longer-lived species are more resistant to oxidative stress (Kapahi et al, 1999), which may be due to greater antioxidant and/or DNA repair capacities. This hypothesis was addressed by culturing primary dermal fibroblasts from eight mammalian species ranging in maximum lifespan from 5 to 120 years. Only the antioxidant manganese superoxide dismutases (MnSOD) positively scaled with species lifespan (p<0.01). Oxidative damage to DNA is primarily repaired by the base excision repair (BER) pathway. BER enzyme activities showed either no correlation or as in the case of polymerase p correlated, negatively with donor species (p<0.01 ). Typically, mammalian cells are cultured in a 20% O2 (atmospheric) environment, which is several-fold higher than cells experience in vivo. Therefore, the secondary aim of this study was to determine the effect of culturing mammalian cells at a more physiological oxygen tension (3%) on BER, and antioxidant, enzyme activities. Consistently, standard culture conditions induce higher antioxidant and DNA ba.se excision repair activities than are present under a more physiological oxygen concentration. Therefore, standard culture conditions are inappropriate for studies of oxidative stress-induced activities and species differences in fibroblast DNA BER repair capacities may represent differences in ability to respond to oxidative stress. An interesting outcome firom this study was that some inherent cellular properties are maintained in culture (i.e. stress responses) while others are not (i.e. MR).
Resumo:
The purpose of this cross-sectional exploratory study was to examine the relationships among self-efficacy, stage of change, and exercise behaviour in a sample of younger (Grade 9) and older (Grade 12) adolescents. A secondary objective of this study was to apply the transtheoretical model of Stage of Change, as a measure of intention to change, in order to discover the applicability of the model to an adolescent cohort in relation to exercise behaviour. This five-stage model is a self-report measure of an individual's readiness to adopt a new behaviour (e.g., regular exercise). The transtheoretical model incorporates Bandura's self-efficacy factor, which is purported to be a predictive measure of exercise behaviour and a covariant of stage. Exercise behaviour was measured with the Physical Activity Scale, and the University of Rhode Island Change Assessment Scale (URleA) was used to measure the stage of change and self-efficacy variables. The results of this study indicated significant differences between younger and older adolescents, and between males and females in their exercise behaviour. No significant differences were found for grade and gender on stage of change as measured by either a single-item question or a continuous measure of stage. Although grade and gender subgroups were not significantly different in their self-efficacy, significant interaction was found in the grade*gender variable.
Resumo:
Activation of pyruvate dehydrogenase (PDH), which converts pyruvate into acetyl-CoA, is accomplished by a pair of specific phosphatases (PDP 1 & 2). A cross-sectional study investigating the effect of aerobic capacity on PDP activity and expression found that: 1) PDP activity and PDP! protein expression were positively correlated with most aerobic capacity measures in males (n=lS), but not females (n=12); 2) only males showed a positive correlation between PDP activity and PDPl protein expression (r=0.47; p=O.05), indicating that the increase in PDP activity in males is largely explained by increased PDPl protein expression, but that females rely on another level for PDP activity regulation; and 3) PDP} and Ela protein expression increase in unison when expressed relative to the E2 core. These data suggest that with increased aerobic capacity there is an increased capacity for carbohydrate oxidation through PDH, via El a, and an increased ability to activate PDH, via PDP, when exercising maximally.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal