996 resultados para ADDITION POLYMERIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quasi-aromatic property of metal chelates of thio-beta-diketones has been studied by reacting them with phenylisocyanate, where addition takes place at the gamma-CH in a stepwise manner. Mono-thiodiketonates of Ni(II), Pd(II), cu(II) and Co(III) and the dithio-acetylacetonate of Ni(II) react with phenylisocyanate to produce mono-, di- and triphenylamido [with cobalt (III) only] substituted derivatives. In the case of tris (ethylthioacetoacetato) cobalt (III), it is found that the reaction with phenylisocyanate gives two isomers, a chocolate coloured isomer in which the phenylamido carbonyl is not coordinated while the green coloured isomer has bonding through phenylemido carbonyl oxygen. The reactions of the thiodiketonates have been compared with those of beta-diketonates and beta-ketoiminates. The reaction products have been characterised by elemental analyses, magnetic moments, and electronic, IR and 1H NMR spectral studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the polymerization mechanism of a precursor is indispensable to enhance the requisite material properties. In situ mass spectroscopy and X-ray photoelectron spectroscopy is used in this study to understand the RF plasma polymerization of γ-terpinene. High-resolution mass spectra positive ion mass spectrometry data of the plasma phase demonstrates the presence of oligomeric species of the type [M+H]+ and [2M+H]+, where M represents a unit of the starting material. In addition, there is abundant fragmented species, with most dominant being [M+] (136 m/z), C10H13+ (133 m/z), C9H11+ (119 m/z), and C7H9+ (93 m/z). The results reported in this manuscript enables to comprehend the relationship between the degree of incorporation of oxygen and the rate of deposition with the input RF power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A non-synthetic polymer material, polyterpenol, was fabricated using a dry polymerization process namely RF plasma polymerization from an environmentally friendly monomer and its surface, optical and electrical properties investigated. Polyterpenol films were found to be transparent over the visible wavelength range, with a smooth surface with an average roughness of less than 0.4 nm and hardness of 0.4 GPa. The dielectric constant of 3.4 for polyterpenol was higher than that of the conventional polymer materials used in the organic electronic devices. The non-synthetic polymer material was then implemented as a surface modification of the gate insulator in field effect transistor (OFET) and the properties of the device were examined. In comparison to the similar device without the polymer insulating layer, the polyterpenol based OFET device showed significant improvements. The addition of the polyterpenol interlayer in the OFET shifted the threshold voltage significantly; + 20 V to -3 V. The presence of trapped charge was not observed in the polyterpenol interlayer. This assisted in the improvement of effective mobility from 0.012 to 0.021 cm 2/Vs. The switching property of the polyterpenol based OFET was also improved; 107 compared to 104. The results showed that the non-synthetic polyterpenol polymer film is a promising candidate of insulators in electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of cupric dipivaloylmethide in vinyl polymerization systems was investigated with a view to understanding the mechanism of polymerization initiation. Results of polymerization reactions together with spectral investigation data are presented. Polymerization in the presence of the chelate proceeds through a free-radical process. The corresponding kinetic and transfer constants and activation energy values suggest a normal propagation step. With the help of spectral data an attempt is made to suggest a plausible mechanism of initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal polymerization of acrylamide has been followed by the DSC technique, and the activation energy (E) values at different stages of the fraction polymerized (a) have been determined from the exotherm of the thermograms obtained. The trend of variation of E with agr shows that E remains constant up to agr = 0.5 and decreases with a further increase in agr. A close look at the composite nature of the exotherms, agr-t, and agr-T curves shows that the polymerization of acrylamide involves two processes. The first process is the formation of linear polyacrylamide and the second is the simultaneous cross-linking of the linear chains together with the formation of linear polyacrylamide. Experiments such as NH3 detection by differential thermal analysis techniques and annealing studies have been made to shed further light on the polymerization process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kinetic model has been developed for the bulk polymerization of vinyl chloride using Talamini's hypothesis of two-phase polymerization and a new concept of kinetic solubility which assumes that rapidly growing polymer chains have considerably greater solubility than the thermodynamic solubility of preformed polymer molecules of the same size and so can remain in solution even under thermodynamically unfavourable conditions. It is further assumed that this kinetic solubility is a function of chain length. The model yields a rate expression consistent with the experimental data for vinyl chloride bulk polymerization and moreover is able to explain several characteristic kinetic features of this system. Application of the model rate expression to the available rate data has yielded 2.36 × 108l mol−1 sec−1 for the termination rate constant in the polymer-rich phase; as expected, this value is smaller than that reported for homogenous polymerization by a factor of 10–30.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mannans are abundant plant polysaccharides found in the endosperm of certain leguminous seeds (guar gum galactomannan, GG; locust bean gum galactomannan, LBG), in the tuber of the konjac plant (konjac glucomannan, KGM), and in softwoods (galactoglucomannan, GGM). This study focused on the effects of the chemical structure of mannans on their film-forming and emulsion-stabilizing properties. Special focus was on spruce GGM, which is an interesting new product from forest biorefineries. A plasticizer was needed for the formation of films from mannans other than KGM and the optimal proportion was 40% (w/w of polymers) glycerol or sorbitol. Galactomannans with lower galactose content (LBG, modified GG) produced films with higher elongation at break and tensile strength. The mechanical properties of GG-based films were improved by decreasing the degree of polymerization of the polysaccharide with moderate mannanase treatments. The improvement of mechanical properties of GGM-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and KGM. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amounts of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation. GGM and KGM were mixed with cellulose nanowhiskers (CNW) to form composite films. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of tens of micrometers were formed. Interestingly, the notable differences in the film structure did not appear to be related to the mechanical and thermal properties of the films. Permeability properties of GGM-based films were compared to those of films from commercial mannans KGM, GG, and LBG. GGM-based films had the lowest water vapor permeability when compared to films from other mannans. The oxygen permeability of GGM films was of the same magnitude as that of commercial polyethylene / ethylene vinyl alcohol / polyethylene laminate film. The aroma permeability of GGM films was low. All films were transparent in the visible region, but GGM films blocked the light transmission in the ultraviolet region of the spectra. The stabilizing effect of GGM on a model beverage emulsion system was studied and compared to that of GG, LBG, KGM, and cAX. In addition, GG was enzymatically modified in order to examine the effect of the degree of polymerization and the degree of substitution of galactomannans on emulsion stability. Use of GGM increased the turbidity of emulsions both immediately after preparation and after storage of up to 14 days at room temperature. GGM emulsions had higher turbidity than the emulsions containing other mannans. Increasing the storage temperature to +45 ºC led to rapid emulsion breakdown, but a decrease in storage temperature increased emulsion stability after 14 days. A low degree of polymerization and a high degree of substitution of the modified galactomannans were associated with a decrease in emulsion turbidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commodity plastics that are used in our everyday lives are based on polyolefin resins and they find wide variety of applications in several areas. Most of the production is carried out in catalyzed low pressure processes. As a consequence polymerization of ethene and α-olefins has been one of the focus areas for catalyst research both in industry and academia. Enormous amount of effort have been dedicated to fine tune the processes and to obtain better control of the polymerization and to produce tailored polymer structures The literature review of the thesis concentrates on the use of Group IV metal complexes as catalysts for polymerization of ethene and branched α-olefins. More precisely the review is focused on the use of complexes bearing [O,O] and [O,N] type ligands which have gained considerable interest. Effects of the ligand framework as well as mechanical and fluxional behaviour of the complexes are discussed. The experimental part consists mainly of development of new Group IV metal complexes bearing [O,O] and [O,N] ligands and their use as catalysts precursors in ethene polymerization. Part of the experimental work deals with usage of high-throughput techniques in tailoring properties of new polymer materials which are synthesized using Group IV complexes as catalysts. It is known that the by changing the steric and electronic properties of the ligand framework it is possible to fine tune the catalyst and to gain control over the polymerization reaction. This is why in this thesis the complex structures were designed so that the ligand frameworks could be fairly easily modified. All together 14 complexes were synthesised and used as catalysts in ethene polymerizations. It was found that the ligand framework did have an impact within the studied catalyst families. The activities of the catalysts were affected by the changes in complex structure and also effects on the produced polymers were observed: molecular weights and molecular weight distributions were depended on the used catalyst structure. Some catalysts also produced bi- or multi-modal polymers. During last decade high-throughput techniques developed in pharmaceutical industries have been adopted into polyolefin research in order to speed-up and optimize the catalyst candidates. These methods can now be regarded as established method suitable for both academia and industry alike. These high-throughput techniques were used in tailoring poly(4-methyl-1-pentene) polymers which were synthesized using Group IV metal complexes as catalysts. This work done in this thesis represents the first successful example where the high-throughput synthesis techniques are combined with high-throughput mechanical testing techniques to speed-up the discovery process for new polymer materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polymerization of methyl methacrylate initiated by a mixed ligand complex. [NN′-ethylenebis(salicylideneiminato)](benzoylacetonato)cobalt(III) has been studied in bulk and in benzene at 70° and 80°. The rate of polymerization is proportional to (concentration of the chelate)1/2 and the monomer exponent is close to 1.5. The activation energy and the kinetic and transfer constants are evaluated. A free radical mechanism has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer protected gold nanoparticles have successfully been synthesized by both "grafting-from" and "grafting-to" techniques. The synthesis methods of the gold particles were systematically studied. Two chemically different homopolymers were used to protect gold particles: thermo-responsive poly(N-isopropylacrylamide), PNIPAM, and polystyrene, PS. Both polymers were synthesized by using a controlled/living radical polymerization process, reversible addition-fragmentation chain transfer (RAFT) polymerization, to obtain monodisperse polymers of various molar masses and carrying dithiobenzoate end groups. Hence, particles protected either with PNIPAM, PNIPAM-AuNPs, or with a mixture of two polymers, PNIPAM/PS-AuNPs (i.e., amphiphilic gold nanoparticles), were prepared. The particles contain monodisperse polymer shells, though the cores are somewhat polydisperse. Aqueous PNIPAM-AuNPs prepared using a "grafting-from" technique, show thermo-responsive properties derived from the tethered PNIPAM chains. For PNIPAM-AuNPs prepared using a "grafting-to" technique, two-phase transitions of PNIPAM were observed in the microcalorimetric studies of the aqueous solutions. The first transition with a sharp and narrow endothermic peak occurs at lower temperature, and the second one with a broader peak at higher temperature. In the first transition PNIPAM segments show much higher cooperativity than in the second one. The observations are tentatively rationalized by assuming that the PNIPAM brush can be subdivided into two zones, an inner and an outer one. In the inner zone, the PNIPAM segments are close to the gold surface, densely packed, less hydrated, and undergo the first transition. In the outer zone, on the other hand, the PNIPAM segments are looser and more hydrated, adopt a restricted random coil conformation, and show a phase transition, which is dependent on both particle concentration and the chemical nature of the end groups of the PNIPAM chains. Monolayers of the amphiphilic gold nanoparticles at the air-water interface show several characteristic regions upon compression in a Langmuir trough at room temperature. These can be attributed to the polymer conformational transitions from a pancake to a brush. Also, the compression isotherms show temperature dependence due to the thermo-responsive properties of the tethered PNIPAM chains. The films were successfully deposited on substrates by Langmuir-Blodgett technique. The sessile drop contact angle measurements conducted on both sides of the monolayer deposited at room temperature reveal two slightly different contact angles, that may indicate phase separation between the tethered PNIPAM and PS chains on the gold core. The optical properties of amphiphilic gold nanoparticles were studied both in situ at the air-water interface and on the deposited films. The in situ SPR band of the monolayer shows a blue shift with compression, while a red shift with the deposition cycle occurs in the deposited films. The blue shift is compression-induced and closely related to the conformational change of the tethered PNIPAM chains, which may cause a decrease in the polarity of the local environment of the gold cores. The red shift in the deposited films is due to a weak interparticle coupling between adjacent particles. Temperature effects on the SPR band in both cases were also investigated. In the in situ case, at a constant surface pressure, an increase in temperature leads to a red shift in the SPR, likely due to the shrinking of the tethered PNIPAM chains, as well as to a slight decrease of the distance between the adjacent particles resulting in an increase in the interparticle coupling. However, in the case of the deposited films, the SPR band red-shifts with the deposition cycles more at a high temperature than at a low temperature. This is because the compressibility of the polymer coated gold nanoparticles at a high temperature leads to a smaller interparticle distance, resulting in an increase of the interparticle coupling in the deposited multilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethylene is the most widely used synthetic polymer in the world. Most polyethylene is made with Ziegler-Natta catalysts. Polyethylenes for special applications are made with metallocenes, which are nowadays heavily patented. It is laborious therefore, to develop new metallocenes. The aim of this work was to investigate the feasibility of replacing the cyclopentadienyl ligands of metallocenes by aminopyridinato ligands without losing the good properties of the metallocenes, such as high activity and formation of linear polymer. The subject was approached by studying what kind of catalysts the metallocenes are and how they catalyze polyethylene. The polymerization behavior of metallocenes was examined by synthesizing a piperazino substituted indenyl zirconocene catalyst and comparing its polymerization data with that of the indenyl zirconocene catalyst. On the basis of their isolobality, it was thought that aminopyridinato ligands might replace cyclopentadienyl ligands. It was presumed that the polymerization mechanism and the active center in ethylene polymerization would be similar for aminopyridinato and metallocene catalysts. Titanium aminopyridinato complexes were prepared and their structures determined to clarify the relationship between structure of the catalyst precursor and polymerization results. The ethylene polymerization results for titanium 2-phenylaminopyridinato catalysts and titanocene catalysts were compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. One potential method to manage fusarium wilt of banana is by manipulating the nutrient status in the soil. This study was conducted to determine the quality of Foc suppressive and conducive soil, the influence of soil application of silica and manure on the incidence of fusarium wilt of banana. Surveys were conducted in five banana plantations in three provinces in Indonesia: Lampung-Sumatra, West Java and Central Java. From the five locations, one location (Sala-man-Central Java) was heavily infected by Foc, another location (NTF Lampung-Sumatera) was slightly infected by Foc, while the rest (Sarampad-West Java, Talaga-West Java and GGP Lampung-Sumatra) were healthy banana plantations without Foc infection. Labile carbon analysis showed that the Foc suppressive soil had greater labile carbon content than conducive soil. Also, the analysis of fluorescein diacetate hydrolysis (FDA) and ?-glucosidase showed greater microbial activity in suppressive soil than the conducive soil. Observations of the incidence of necrotic rhizome of Foc susceptible 'Ambon Kuning' (AAA) banana cultivar showed that in the suppressive soil taken from Sarampad West Java, the application of silica and manure helped suppress fusarium wilt disease development. In the conducive soil taken from Salaman-Central Java, silica and manure applications were not able to suppress disease incidence. The result of this study indicated that in suppressive soil, the application of silica can increase plant resistance to Foc infection, while manure application can increase soil microbial activity, and suppress Foc development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymerization of methyl methacrylate in the presence of a mixed ligand complex, [N,N-ethylenebis(salicylideneiminato)](acetylacetonato)cobalt(III) in benzene was studied. The rate of polymerization was proportional to the square root of the concentration of the chelate and the monomer exponent was 1.67 and 1.69 at 60 and 70°C, respectively. The activation energy and the kinetic and transfer constants were evaluated. A free-radical mechanism has been proposed.