150 resultados para ADAM10 endopeptidase
Resumo:
A highly specific stromal processing activity is thought to cleave a large diversity of precursors targeted to the chloroplast, removing an N-terminal transit peptide. The identity of this key component of the import machinery has not been unequivocally established. We have previously characterized a chloroplast processing enzyme (CPE) that cleaves the precursor of the light-harvesting chlorophyll a/b binding protein of photosystem II (LHCPII). Here we report the overexpression of active CPE in Escherichia coli. Examination of the recombinant enzyme in vitro revealed that it cleaves not only preLHCPII, but also the precursors for an array of proteins essential for different reactions and destined for different compartments of the organelle. CPE also processes its own precursor in trans. Neither the recombinant CPE nor the native CPE of chloroplasts process a preLHCPII mutant with an altered cleavage site demonstrating that both forms of the enzyme are sensitive to the same structural modification of the substrate. The transit peptide of the precursor of ferredoxin is released by a single cleavage event and found intact after processing by recombinant CPE and a chloroplast extract as well. These results provide the first direct demonstration that CPE is the general stromal processing peptidase that acts as an endopeptidase. Significantly, recombinant CPE cleaves in the absence of other chloroplast proteins, and this activity depends on metal cations, such as zinc.
Resumo:
Funding: Wellcome Trust, 070247/Z/03/A. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Resumo:
The ricinosome (synonym, precursor protease vesicle) is a novel organelle, found so far exclusively in plant cells. Electron microscopic studies suggest that it buds off from the endoplasmic reticulum in senescing tissues. Biochemical support for this unusual origin now comes from the composition of the purified organelle, which contains large amounts of a 45-kDa cysteine endoprotease precursor with a C-terminal KDEL motif and the endoplasmic reticulum lumen residents BiP (binding protein) and protein disulfide isomerase. Western blot analysis, peptide sequencing, and mass spectrometry demonstrate retention of KDEL in the protease proform. Acidification of isolated ricinosomes causes castor bean cysteine endopeptidase activation, with cleavage of the N-terminal propeptide and the C-terminal KDEL motif. We propose that ricinosomes accumulate during senescence by programmed cell death and are activated by release of protons from acidic vacuoles.
Resumo:
A cDNA encoding human gamma-glutamyl hydrolase has been identified by searching an expressed sequence tag data base and using rat gamma-glutamyl hydrolase cDNA as the query sequence. The cDNA encodes a 318-amino acid protein of Mr 35,960. The deduced amino acid sequence of human gamma-glutamyl hydrolase shows 67% identity to that of rat gamma-glutamyl hydrolase. In both rat and human the 24 amino acids preceding the N terminus constitute a structural motif that is analogous to a leader or signal sequence. There are four consensus asparagine glycosylation sites in the human sequence, with three of them conserved in the rat enzyme. Expression of both the human and rat cDNA in Escherichia coli produced antigenically related proteins with enzyme activities characteristic of the native human and rat enzymes, respectively, when methotrexate di- or pentaglutamate were used as substrates. With the latter substrate the rat enzyme cleaved the innermost gamma-glutamyl linkage resulting in the sole production of methotrexate as the pteroyl containing product. The human enzyme differed in that it produced methotrexate tetraglutamate initially, followed by the triglutamate, and then the diglutamate and methotrexate. Hence the rat enzyme is an endopeptidase with methotrexate pentaglutamate as substrate, whereas the human enzyme exhibits exopeptidase activity. Another difference is that the expressed rat enzyme is equally active on methotrexate di- and pentaglutamate whereas the human enzyme has severalfold greater activity on methotrexate pentaglutamate compared with the diglutamate. These properties are consistent with the enzymes derived from human and rat sources.
Resumo:
Since concomitant release of structurally related peptide hormones with apparently similar functions seems to be a general concept in endocrinology, we have studied the dynamics of the lifetime of the three known adipokinetic hormones (AKHs) of the migratory locust, which control flight-directed mobilization of carbohydrate and lipid from fat body stores. Although the structure of the first member of the AKHs has been known for 20 years, until now, reliable data on their inactivation and removal from the hemolymph are lacking, because measurement requires AKHs with high specific radioactivity. Employing tritiated AKHs with high specific radioactivity, obtained by catalytic reduction with tritium gas of the dehydroLeu2 analogues of the AKHs synthesized by the solid-phase procedure, studies with physiological doses of as low as 1.0 pmol per locust could be conducted. The AKHs appear to be transported in the hemolymph in their free forms and not associated with a carrier protein, despite their strong hydrophobicity. Application of AKHs in their free form in in vivo and in vitro studies therefore now has been justified. We have studied the degradation of the three AKHs during rest and flight. The first cleavage step by an endopeptidase is crucial, since the resulting degradation products lack any adipokinetic activity. Half-lives for AKH-I, -II and -III were 51, 40, and 5 min, respectively, for rest conditions and 35, 37, and 3 min, respectively, during flight. The rapid and differential degradation of structurally related hormones leads to changes in the ratio in which they are released and therefore will have important consequences for concerted hormone action at the level of the target organ or organs, suggesting that each of the known AKHs may play its own biological role in the overall syndrome of insect flight.
Resumo:
A 69-kDa proteinase (P69), a member of the pathogenesis-related proteins, is induced and accumulates in tomato (Lycopersicon esculentum) plants as a consequence of pathogen attack. We have used the polymerase chain reaction to identify and clone a cDNA from tomato plants that represent the pathogenesis-related P69 proteinase. The nucleotide sequence analysis revealed that P69 is synthesized in a preproenzyme form, a 745-amino acid polypeptide with a 22-amino acid signal peptide, a 92-amino acid propolypeptide, and a 631-amino acid mature polypeptide. Within the mature region the most salient feature was the presence of domains homologous to the subtilisin serine protease family. The amino acid sequences surrounding Asp-146, His-203, and Ser-532 of P69 are closely related to the catalytic sites (catalytic triad) of the subtilisin-like proteases. Northern blot analysis revealed that the 2.4-kb P69 mRNA accumulates abundantly in leaves and stem tissues from viroid-infected plants, whereas the mRNA levels in tissues from healthy plants were undetectable. Our results indicate that P69, a secreted calcium-activated endopeptidase, is a plant pathogenesis-related subtilisin-like proteinase that may collaborate with other defensive proteins in a general mechanism of active defense against attacking pathogens.
Resumo:
The cyclotides are a family of small disulfide rich proteins that have a cyclic peptide backbone and a cystine knot formed by three conserved disulfide bonds. The combination of these two structural motifs contributes to the exceptional chemical, thermal and enzymatic stability of the cyclotides, which retain bioactivity after boiling. They were initially discovered based on native medicine or screening studies associated with some of their various activities, which include uterotonic action, anti-HIV activity, neurotensin antagonism, and cytotoxicity. They are present in plants from the Rubiaceae, Violaceae and Cucurbitaccae families and their natural function in plants appears to be in host defense: they have potent activity against certain insect pests and they also have antimicrobial activity. There are currently around 50 published sequences of cyclotides and their rate of discovery has been increasing over recent years. Ultimately the family may comprise thousands of members. This article describes the background to the discovery of the cyclotides, their structural characterization, chemical synthesis, genetic origin, biological activities and potential applications in the pharmaceutical and agricultural industries. Their unique topological features make them interesting from a protein folding perspective. Because of their highly stable peptide framework they might make useful templates in drug design programs, and their insecticidal activity opens the possibility of applications in crop protection.
Resumo:
Backbone-cyclized proteins are becoming increasingly well known, although the mechanism by which they are processed from linear precursors is poorly understood. In this report the sequence and structure of the linear precursor of a cyclic trypsin inhibitor, sunflower trypsin inhibitor 1 (SFTI-1) from sunflower seeds, is described. The structure indicates that the major elements of the reactive site loop of SFTI-1 are present before processing. This may have importance for a protease-mediated cyclizing reaction as the rigidity of SFTI-1 may drive the equilibrium of the reaction catalyzed by proteolytic enzymes toward the formation of a peptide bond rather than the normal cleavage reaction. The occurrence of residues in the SFTI-1 precursor susceptible to cleavage by asparaginyl proteases strengthens theories that involve this enzyme in the processing of SFTI-1 and further implicates it in the processing of another family of plant cyclic proteins, the cyclotides. The precursor reported here also indicates that despite strong active site sequence homology, SFTI-1 has no other similarities with the Bowman-Birk trypsin inhibitors, presenting interesting evolutionary questions.
Resumo:
Omapatrilat, a vasopeptidase inhibitor, inhibits both neutral endopeptidase and angiotensin-converting enzyme with similar potency. The aim of this study was to investigate whether omapatrilat prevents or reverses cardiovascular remodeling and hypertension in deoxycorticosterone acetate (DOCA)-salt rats. Male Wistar rats (313 2 g, n=114) were uninephrectomized (UNX) with or without further treatment with DOCA and 1% NaCl in the drinking water. Compared with UNX control rats, DOCA-salt rats developed hypertension, cardiovascular hypertrophy, perivascular and interstitial cardiac fibrosis and inflammation, endothelial dysfunction, and the prolongation of ventricular action potential duration within four weeks. The administration of omapatrilat (40 mg/kg/day po) for two weeks commencing two weeks after surgery attenuated the development of cardiovascular hypertrophy, inflammation, fibrosis, and ventricular action potential prolongation. In contrast, omapatrilat treatment did not lower systolic blood pressure nor improve endothelial dysfunction. This study concludes that the renin-angiotensin-aldosterone, natriuretic peptide, and bradykinin systems are directly involved in the pathogenesis of cardiovascular remodeling in the DOCA-salt model of hypertension in rats, which may be independent of their effects on blood pressure.
Resumo:
We completed the genome sequence of Lettuce necrotic yellows virus (LNYV) by determining the nucleotide sequences of the 4a (putative phosphoprotein), 4b, M (matrix protein), G (glycoprotein) and L (polymerase) genes. The genome consists of 12,807 nucleotides and encodes six genes in the order 3' leader-N-4a(P)-4b-M-G-L-5' trailer. Sequences were derived from clones of a cDNA library from LNYV genomic RNA and from fragments amplified using reverse transcription-polymerase chain reaction. The 4a protein has a low isoelectric point characteristic for rhabdovirus phosphoproteins. The 4b protein has significant sequence similarities with the movement proteins of capillo- and trichoviruses and may be involved in cell-to-cell movement. The putative G protein sequence contains a predicted 25 amino acids signal peptide and endopeptidase cleavage site, three predicted glycosylation sites and a putative transmembrane domain. The deduced L protein sequence shows similarities with the L proteins of other plant rhabdoviruses and contains polymerase module motifs characteristic for RNA-dependent RNA polymerases of negative-strand RNA viruses. Phylogenetic analysis of this motif among rhabdoviruses placed LNYV in a group with other sequenced cytorhabdoviruses, most closely related to Strawberry crinkle virus. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
HIV-1 integrase, the viral enzyme responsible for provirus integration into the host genome, can be actively degraded by the ubiquitin-proteasome pathway. Here, we identify von Hippel-Lindau binding protein 1(VBP1), a subunit of the prefoldin chaperone, as an integrase cellular binding protein that bridges interaction between integrase and the cullin2 (Cul2)-based von Hippel-Lindau (VHL) ubiquitin ligase. We demonstrate that VBP1 and Cul2/VHL are required for proper HIV-1 expression at a step between integrase-dependent proviral integration into the host genome and transcription of viral genes. Using both an siRNA approach and Cul2/VHL mutant cells, we show that VBP1 and the Cul2/VHL ligase cooperate in the efficient polyubiquitylation of integrase and its subsequent proteasome-mediated degradation. Results presented here support a role for integrase degradation by the prefoldin-VHL-proteasome pathway in the integration-transcription transition of the viral replication cycle.
Resumo:
Tubular function of 17 pediatric patients with a mild form of acute post-infectious glomerulonephritis was prospectively evaluated by assessment of the urinary activity of proximal and distal tubule enzymes. Neutral-like endopeptidase (NEP-like) and angiotensin-converting enzyme (ACE) were the proximal tubule enzymes assessed, while prolyl-endopeptidase (PE) and serine-endopeptidase H1 and H2 were the distal tubule enzymes analyzed. Urine was collected at diagnosis (T0) and after 2 (T2) and 6 (T6) months of follow-up. NEP-like enzyme activity (nmol/mg creatinine; median±quartile range) was increased at diagnosis, and this remained stable during the first 6 months (T0 18.30±83.26, T2 17.32±49.56, T6 23.38±107.18). Urinary activity of the other enzymes was as follows: ACE (mU/ml per mg creatinine) T0 0.08±0.16, T2 0.06±0.10, T6 0.18±0.29; PE (nmol/mg creatinine) T0 6.70±84.87, T2 9.55±69.00, T6 13.67±28.70; serine-endopeptidase H1 (nmol/mg creatinine) T0 7.86±26.95, T2 17.17±59.37, T6 18.19± 79.14; and serine-thiol-endopeptidase H2 (nmol/mg creatinine) T0 3.06±21.97, T2 12.06±32.42, T6 16.22± 44.06. Thirty other healthy children matched for age and gender were considered as a control group. This group was assessed once and the results were: NEP-like activity 6.05±10.54, ACE 0.11±0.22, PE 7.10±13.36, H1 5.00±17.30, and H2 6.00±20.16. In conclusion, we observed that NEP-like and H1 enzymes exhibited significant increased urinary activity 6 months after the diagnosis. This increase occurred in spite of the disappearance of clinical symptoms, which occurred 2 months after the diagnosis. We believe that the increase in urinary enzymatic activity could be a manifestation of a silent tubular dysfunction following an episode of acute post-infectious glomerulonephritis.
Resumo:
Chloroplast protease AtDeg2 (an ATP-independent serine endopeptidase) is cytosolically synthesized as a precursor, which is imported into the chloroplast stroma and deprived of its transit peptide. Then the mature protein undergoes routing to its functional location at the stromal side of thylakoid membrane. In its linear structure AtDeg2 molecule contains the protease domain with catalytic triad (HDS) and two PDZ domains (PDZ1 and PDZ2). In vivo AtDeg2 most probably exists as a supposedly inactive haxamer, which may change its oligomeric stage to form active 12-mer, or 24-mer. AtDeg2 has recently been demonstrated to exhibit dual protease/chaperone function. This review is focused on the current awareness with regard to AtDeg2 structure and functional significance.