997 resultados para ACUTE ALLOGRAFT-REJECTION
Resumo:
Objective: To evaluate the clinical outcomes of multivisceral transplantation (MVT) in the setting of diffuse thrombosis of the portomesenteric venous system. Background: Liver transplantation (LT) in the face of cirrhosis and diffuse portomesenteric thrombosis (PMT) is controversial and contraindicated in many transplant centers. LT using alternative techniques such as portocaval hemitransposition fails to eliminate complications of portal hypertension. MVT replaces the liver and the thrombosed portomesenteric system. Methods: A database of intestinal transplant patients was maintained with prospective analysis of outcomes. The diagnosis of diffuse PMT was established with dual-phase abdominal computed tomography or magnetic resonance imaging with venous reconstruction. Results: Twenty-five patients with grade IV PMT received 25 MVT. Eleven patients underwent simultaneous cadaveric kidney transplantation. Biopsy-proven acute cellular rejection was noted in 5 recipients, which was treated successfully. With a median follow-up of 2.8 years, patient and graft survival were 80%, 72%, and 72% at 1, 3, and 5 years, respectively. To date, all survivors have good graft function without any signs of residual/recurrent features of portal hypertension. Conclusions: MVT can be considered as an option for the treatment of patients with diffuse PMT. MVT is the only procedure that completely reverses portal hypertension and addresses the primary disease while achieving superior survival results in comparison to the alternative options.
Resumo:
Pancreatic islet transplantation represents a fascinating procedure that, at the moment, can be considered as alternative to standard insulin treatment or pancreas transplantation only for selected categories of patients with type 1 diabetes mellitus. Among the factors responsible for leading to poor islet engraftment, hypoxia plays an important role. Mesenchymal stem cells (MSCs) were recently used in animal models of islet transplantation not only to reduce allograft rejection, but also to promote revascularization. Currently adipose tissue represents a novel and good source of MSCs. Moreover, the capability of adipose-derived stem cells (ASCs) to improve islet graft revascularization was recently reported after hybrid transplantation in mice. Within this context, we have previously shown that hyaluronan esters of butyric and retinoic acids can significantly enhance the rescuing potential of human MSCs. Here we evaluated whether ex vivo preconditioning of human ASCs (hASCs) with a mixture of hyaluronic (HA), butyric (BU), and retinoic (RA) acids may result in optimization of graft revascularization after islet/stem cell intrahepatic cotransplantation in syngeneic diabetic rats. We demonstrated that hASCs exposed to the mixture of molecules are able to increase the secretion of vascular endothelial growth factor (VEGF), as well as the transcription of angiogenic genes, including VEGF, KDR (kinase insert domain receptor), and hepatocyte growth factor (HGF). Rats transplanted with islets cocultured with preconditioned hASCs exhibited a better glycemic control than rats transplanted with an equal volume of islets and control hASCs. Cotransplantation with preconditioned hASCs was also associated with enhanced islet revascularization in vivo, as highlighted by graft morphological analysis. The observed increase in islet graft revascularization and function suggests that our method of stem cell preconditioning may represent a novel strategy to remarkably improve the efficacy of islets-hMSCs cotransplantation.
Resumo:
The central issue in organ transplantation remains suppression of allograft rejection. Immunosuppression can be achieved by depleting lymphocytes, diverting lymphocyte traffic, or blocking lymphocyte response pathways. Immunosuppressive drugs include small-molecule drugs, depleting and nondepleting protein drugs (polyclonal and monoclonal antibodies), fusion proteins, intravenous immune globulin, and glucocorticoids. Small-molecule immunosuppressive agents include calcineurin-inhibitors (cyclosporine, tacrolimus), Target-of-Rapamycin Inhibitors (Sirolimus, Everolimus), inhibitors of nucleotide synthesis and azathioprine. The review covers the mode of action of these drugs with a special focus on belatacept, a new promising fusion protein. Different immuo-suppressive strategies mean also different safety profiles. Common side effects include the consequences of diminished immuno- response, i.e. infections and cancer (mainly involving the skin). Toxic side effects of immunosuppressive drugs range in a wide spectrum that involves almost every organ. The major interest of this toxic effects is the cardiovascular tolerance (with large differences from drug to drug), that are discussed seperately. The calcineurin- and mTOR-inhibitors are both metabolized by the CYP450 3A4 enzyme, which is also involved in the metabolism of many other drugs. The review discusses the most important interactions that in- or decreases the through level of these drugs.
Resumo:
Farnesyltransferase Inhibitors (FTIs) are a class of drugs known to prevent the farnesylation and subsequent membrane attachment of a number of intracellular proteins. In various studies, the administration of FTIs has been found to play a role in the activation and development of T-cells in the immune system. FTIs have also been found to act as immunomodulators in delaying MHC-II mismatched skin allografts in mice. This study focuses on the effect of the FTI, ABT-100, on the differentiation and cytokine secretion of Th1 and Th2 helper T-cells in BALB/C mice to better understand which immune responses are targeted by FTIs. Splenocytes were isolated from BALB/C mice, skewed towards either a Th1 or a Th2 phenotype with the addition of cytokines, and treated with various concentrations of ABT-100. Splenocytes were also isolated and immediately cultured in the presence of ABT-100 to observe differentiation trends of helper T-cells. Cytokine production was measured using intracytoplasmic flow cytometry analysis. I found that ABT-100 treatment does not block Th1 or Th2 cell differentiation. Instead, ABT-100 treatment appears to affect cytokine production from effector T-cells. I found that ABT-100 causes a decrease in IFN-¿ production in mature Th1 cells yet does not affect IL-4 production in mature Th2 cells. This decrease in cytokine production as a result of ABT-100 treatments provides a potential mechanism for how ABT-100 works to delay MHC-II mismatched allograft rejection.
Resumo:
Previous studies demonstrated that impaired left ventricular (LV) relaxation in cardiac allografts limits exercise tolerance post-transplant despite preserved systolic ejection fraction (EF). This study tested in human cardiac allografts whether the isovolumic relaxation time (IVRT), which provides the basis for most of diastolic LV filling, relates with gene expression of regulatory proteins of calcium homeostasis or cardiac matrix proteins. Gene expression was studied in 31 heart transplant recipients (25 male, 6 female) 13-83 months post-transplant with LVEF >50%, LV end-diastolic pressure <20 mmHg, normal LV mass index and without allograft rejection or significant cardiac pathology. IVRT related with the other diastolic parameters e-wave velocity (r = -0.46; p = 0.01), e/a-wave ratio (r = -0.5; p < 0.01) but not with heart frequency (r = -0.16; p = 0.4). No relation of IVRT was observed for immunosuppression, mean rejection grade or other medication. IVRT was not related with gene expression of desmin, collagen I, phospholamban, the Na+-Ca2+ exchanger, the ryanodine receptor or interstitial fibrosis but correlated inversely with SERCA2a (r = -0.48; p = 0.02). Prolonged IVRT is associated with decreased SERCA2a expression in cardiac allografts without significant other pathology. Similar observations in non-transplanted patients with diastolic failure suggest that decreased SERCA2a expression is an important common pathomechanism.
Resumo:
Chronic allograft nephropathy, including chronic rejection, remains one of the major causes of renal allograft failure. Amongst other mediators, metzincins, such as matrix metalloproteinases (MMP), direct extracellular matrix metabolism and cell proliferation. Thus, we hypothesized, that these proteolytic enzymes are differentially regulated in chronic renal transplant rejection in rats and in human renal allograft nephropathy. Our studies demonstrated on the experimental level and in humans an overall up-regulation of MMP, tissue inhibitors of metalloproteinases (TIMP) and related enzymes as a result of rejection processes. Thus, metzincins may represent novel markers and therapeutic targets with respect to renal allograft rejection.
Resumo:
BACKGROUND: Studying the interactions between xenoreactive antibodies, complement and coagulation factors with the endothelium in hyperacute and acute vascular rejection usually necessitates the use of in vivo models. Conventional in vitro or ex vivo systems require either serum, plasma or anti-coagulated whole blood, making analysis of coagulation-mediated effects difficult. Here a novel in vitro microcarrier-based system for the study of endothelial cell (EC) activation and damage, using non-anticoagulated whole blood is described. Once established, the model was used to study the effect of the characterized complement- and coagulation inhibitor dextran sulfate (DXS, MW 5000) for its EC protective properties in a xenotransplantation setting. METHODS: Porcine aortic endothelial cells (PAEC), grown to confluence on microcarrier beads, were incubated with non-anticoagulated whole human blood until coagulation occurred or for a maximum of 90 min. PAEC-beads were either pre- or co-incubated with DXS. Phosphate buffered saline (PBS) experiments served as controls. Fluid phase and surface activation markers for complement and coagulation were analyzed as well as binding of DXS to PAEC-beads. RESULTS: Co- as well as pre-incubation of DXS, followed by washing of the beads, significantly prolonged time to coagulation from 39 +/- 12 min (PBS control) to 74 +/- 23 and 77 +/- 20 min, respectively (P < 0.005 vs. PBS). DXS treatment attenuated surface deposition of C1q, C4b/c, C3b/c and C5b-9 without affecting IgG or IgM deposition. Endothelial integrity, expressed by positivity for von Willebrand Factor, was maintained longer with DXS treatment. Compared with PBS controls, both pre- and co-incubation with DXS significantly prolonged activated partial thromboplastin time (>300 s, P < 0.05) and reduced production of thrombin-antithrombin complexes and fibrinopeptide A. Whilst DXS co-incubation completely blocked classical pathway complement activity (CH50 test) DXS pre-incubation or PBS control experiments showed no inhibition. DXS bound to PAEC-beads as visualized using fluorescein-labeled DXS. CONCLUSIONS: This novel in vitro microcarrier model can be used to study EC damage and the complex interactions with whole blood as well as screen ''endothelial protective'' substances in a xenotransplantation setting. DXS provides EC protection in this in vitro setting, attenuating damage of ECs as seen in hyperacute xenograft rejection.
Resumo:
Acute vascular rejection (AVR), in particular microvascular thrombosis, is an important barrier to successful pig-to-primate xenotransplantation. Here, we report the generation of pigs with decreased tissue factor (TF) levels induced by small interfering (si)RNA-mediated gene silencing. Porcine fibroblasts were transfected with TF-targeting small hairpin (sh)RNA and used for somatic cell nuclear transfer. Offspring were analyzed for siRNA, TF mRNA and TF protein level. Functionality of TF downregulation was investigated by a whole blood clotting test and a flow chamber assay. TF siRNA was expressed in all twelve liveborn piglets. TF mRNA expression was reduced by 94.1 ± 4.7% in TF knockdown (TFkd) fibroblasts compared to wild-type (WT). TF protein expression in PAEC stimulated with 50 ng/mL TNF-α was significantly lower in TFkd pigs (mean fluorescence intensity TFkd: 7136 ± 136 vs. WT: 13 038 ± 1672). TF downregulation significantly increased clotting time (TFkd: 73.3 ± 8.8 min, WT: 45.8 ± 7.7 min, p < 0.0001) and significantly decreased thrombus formation compared to WT (mean thrombus coverage per viewing field in %; WT: 23.5 ± 13.0, TFkd: 2.6 ± 3.7, p < 0.0001). Our data show that a functional knockdown of TF is compatible with normal development and survival of pigs. TF knockdown could be a valuable component in the generation of multi-transgenic pigs for xenotransplantation.
Resumo:
The application of gene therapy to human disease is currently restricted by the relatively low efficiency and potential hazards of methods of oligonucleotide or gene delivery. Antisense or transcription factor decoy oligonucleotides have been shown to be effective at altering gene expression in cell culture expreriments, but their in vivo application is limited by the efficiency of cellular delivery, the intracellular stability of the compounds, and their duration of activity. We report herein the development of a highly efficient method for naked oligodeoxynucleotide (ODN) transfection into cardiovascular tissues by using controlled, nondistending pressure without the use of viral vectors, lipid formulations, or exposure to other adjunctive, potentially hazardous substances. In this study, we have documented the ability of ex vivo, pressure-mediated transfection to achieve nuclear localization of fluorescent (FITC)-labeled ODN in approximately 90% and 50% of cells in intact human saphenous vein and rat myocardium, respectively. We have further documented that pressure-mediated delivery of antisense ODN can functionally inhibit target gene expression in both of these tissues in a sequence-specific manner at the mRNA and protein levels. This oligonucleotide transfection system may represent a safe means of achieving the intraoperative genetic engineering of failure-resistant human bypass grafts and may provide an avenue for the genetic manipultation of cardiac allograft rejection, allograft vasculopathy, or other transplant diseases.
Resumo:
The nature of the alloreactive T-cell response is not yet clearly understood. These strong cellular responses are thought to be the basis of allograft rejection and graft-vs.-host disease. The question of the extent of responding T-cell repertoires has so far been addressed by cellular cloning, often combined with molecular T-cell receptor (TCR) analysis. Here we present a broad repertoire analysis of primed responder cells from mixed lymphocyte cultures in which two different DR1/3 responders were stimulated with DR3/4 cells. Repertoire analysis was performed by TCR spectratyping, a method by which T cells are analyzed on the basis of the complementarity-determining region 3 length of different variable region (V) families. Strikingly, both responders showed very similar repertoires when the TCR V beta was used as a lineage marker. This was not seen when TCR V alpha was analyzed. A different pattern of TCR V beta was observed if the stimulating alloantigen was changed. This finding indicates that alloreactive T cells form a specific repertoire for each alloantigen. Since conservation appears to be linked to TCR V beta, the question of different roles of alpha and beta chains in allorecognition is raised.
Resumo:
La greffe rénale est le meilleur traitement de l’insuffisance rénale terminale. Par contre, la perte prématurée du greffon est un problème majeur chez les greffés qui est due majoritairement au rejet. La classification de Banff reconnait 2 catégories de rejets : une réaction médiée par les anticorps (ABMR) et/ou une réaction cellulaire (TCMR). L’ABMR est caractérisé par le développement de novo d’anticorps contre le donneur (DSA) en circulation et des dommages histologiques, comme la glomérulopathie du transplant. De novo, les DSA anti-HLA-II sont plus fréquemment associés à la glomérulopathie du transplant que les anti-HLA-I et sont associés à un moins bon pronostic clinique. Toutefois, le mécanisme par lequel les anti-HLA-II sont plus dommageables demeure mal connu. Mon hypothèse est que les anticorps anti-HLA sont suffisants pour perturber l’hémostase de l’endothélium glomérulaire. Plus particulièrement, nous croyons que les anticorps anti-HLA-II, diminuent l’expression de la thrombomoduline (TBM), ce qui pourrait mener aux lésions endothéliales glomérulaires associées à la glomérulopathie du transplant. Pour évaluer cette hypothèse, j’ai utilisé un modèle in vitro d’endothélium glomérulaire humain et du sérum de patients transplantés rénaux. Nous avons observé que l’expression membranaire de la TBM augmentait de manière dosedépendante en présence d‘anti-HLA-I, mais pas anti-HLA-II. Toutefois, lors de la mesure intracellulaire nous avons observé une accumulation cytosolique en réponse à une stimulation par les anti-HLA-II. De plus, nous avons observé une association significative entre la présence de DSA circulants anti-HLA-II dans les patients transplantés rénaux et un faible taux de TBM sérique. Ces résultats indiquent que la liaison des anticorps anti-HLA-I et II produit des effets différents sur l’expression endothéliale de la TBM. Les anticorps anti-HLA-II pourraient être associés à un état prothrombotique qui pourrait expliquer l’occurrence plus élevée de lésions microangiopathiques dans l’allogreffe et la moins bonne condition observée chez les patients ayant ces anticorps.
Resumo:
An effective preservation method and decreased rejection are essential for tracheal transplantation in the reconstruction of large airway defects. Our objective in the present study was to evaluate the antigenic properties of glycerin-preserved tracheal segments. Sixty-one tracheal segments (2.4 to 3.1 cm) were divided into three groups: autograft (N = 21), fresh allograft (N = 18) and glycerin-preserved allograft (N = 22). Two segments from different groups were implanted into the greater omentum of dogs (N = 31). After 28 days, the segments were harvested and analyzed for mononuclear infiltration score and for the presence of respiratory epithelium. The fresh allograft group presented the highest score for mononuclear infiltration (1.78 ± 0.43, P <= 0.001) when compared to the autograft and glycerin-preserved allograft groups. In contrast to the regenerated epithelium observed in autograft segments, all fresh allografts and glycerin-preserved allografts had desquamation of the respiratory mucosa. The low antigenicity observed in glycerin segments was probably the result of denudation of the respiratory epithelium and perhaps due to the decrease of major histocompatibility complex class II antigens.
Resumo:
In order to evaluate the role of underlying disease in the high mortality observed in acute renal failure (ARF) and risk factors related to the development of oliguric ARF in renal allograft recipients, two groups were selected: 34 patients with native kidneys, aged 16 and 57 years, and presenting ischemic ARF caused by cardiovascular collapse, with no signs of infection at the time of diagnosis; and 34 renal allograft recipients who developed ARF immediately after transplantation, without rejection. ARF was defined either as 30% increase of basal plasmatic creatinine in patients with native kidneys or non-normalization of plasmatic creatinine at day 5 after transplantation in renal allograft recipients; oliguria as diuresis ≤ 400 mL/24 h. There were no differences in age, male frequency, oliguria presence and duration, need for dialysis, and infection episodes for renal allograft recipients and patients with native kidneys. The development of sepsis (3% and 41%) and death rate (3% and 44%) were higher in patients with native kidneys (p < 0.01). The renal allograft recipients with both oliguric (n = 18) and nonoliguric (n = 16) ARF were evaluated and no difference was observed in the recipient's age, donor's age, cold ischemia time, time elapsed until plasmatic creatinine normalization, donor's plasmatic creatinine or urea, and mean arterial pressure. No differences were observed between the groups regarding frequency of infection episodes during ARF and frequency of death. In conclusion, renal allograft recipients presented a lower death rate and were less susceptible to sepsis. Cold ischemia time, age, and hemodynamic characteristics of the donor did not affect the development of oliguria.
Resumo:
Objective. There are no data to support the suggestion that samples removed from one segment of the transplanted kidney are representative of the whole graft. The aim of this study was to compare the histological differences between biopsies obtained from different portions of the renal allograft and their impact on treatment recommendations. Patients and Methods. Two hundred percutaneous biopsies were performed on kidney allografts and samples were collected from the upper and lower poles (100 kidneys). All samples were randomized and blindly reviewed. We obtained the discordance rates between the poles for the grading of acute rejection and for the diagnosis of nephrotoxicity due to immunosuppression. We also checked if the differences found were sufficient to call for different clinical recommendations. These values were compared with the intrapathologist variation rates. Results. In 70 kidneys adequate sampling was obtained from both poles. The diagnosis of acute rejection were made in 1.7. The discordance rate between the upper and lower poles was 82.3% (kappa = 0.34), higher than the intrapathologist variation (P =.002). Nephrotoxicity was found in 14 kidneys. The discordance rate between the upper and lower poles was 28.6% (kappa = 0.88), with no difference compared with the intrapathologist variation. In 14 of the 70 kidneys (25.7%), discordances between poles had impact on clinical recommendations, most of these cases due to different gradings of acute rejection (78%). This number was higher than the intrapathologist variation (P =.04). Conclusions. The histopathological changes in the kidney allograft are not always homogeneous. This heterogeneity may affect the therapeutic recommendations.