938 resultados para ACIDIC PHOSPHOLIPIDS
Resumo:
The immobilization of enzymes in nanostructured films has potential applications, e.g. in biosensing, for which the activity may not only be preserved, but also enhanced if optimized conditions are identified. Optimization is not straightforward because several requirements must be fulfilled, including a suitable matrix and film-forming technique. In this study, we show that horseradish peroxidase (HRP) has its activity enhanced when immobilized in Langmuir-Blodgett (LB) films, in conjunction with dipalmitoylphosphaticlylglycerol (DPPG). Incorporation of HRP into a DPPG monolayer at the air-water interface was demonstrated with compression isotherms, and Polarization-Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS). From the PM-IRRAS data, we inferred that HRP was not denatured when adsorbed on a pre-formed, low pressure DPPG monolayer. A change in orientation was induced by the phospholipid matrix, with the amide C=O and NH groups from HRP being oriented perpendicular to the surface, parallel to the DPPG acyl chains, i.e. the alpha-helix was inserted into the monolayer. The mixed DPPG-HRP monolayer could be transferred onto solid supports, to which HRP activity was ca. 23% higher than in solution. The control of molecular architecture and choice of a suitable phospholipid matrix allowed HRP-containing LB films to be used in sensing peroxide. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The method employed to incorporate guest molecules onto phospholipid Langmuir monolayers plays an important role in the interaction between the monolayer and the guest molecules. In this paper, we show that for the interaction between horseradish peroxidase (HRP) and a monolayer of dipalmitoylphosphatidylglycerol (DPPG) does depend on the method of HRP incorporation. The surface pressure isotherms of the mixed DPPG/HRP monolayers, for instance, were less expanded when the two materials were co-spread than in the case where HRP was injected into the subphase. Therefore, the method for incorporation affected not only the penetration of HRP but also the changes in molecular packing caused to the DPPG monolayer. With experiments with the monolayer on a pendant drop, we observed that the incorporation of HRP affects the dynamic elasticity of the DPPG monolayer, on a way that varies with the surface pressure. At low pressures, HRP causes the monolayer to be more rigid, while the converse is true for surface pressures above 8 mN/m. Taken all the results together, we conclude that HRP is more efficiently incorporated if injected into the subphase on which a DPPG monolayer had been spread and that the interaction between HRP and DPPG is maintained even at high surface pressures. This is promising for the possible transfer of mixed films onto solid substrates and for applications in biosensors and drug delivery systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A major challenge for producing low cost biosensors based on nanostructured films with control of molecular architectures is to preserve the catalytic activity of the immobilized biomolecules. In this study, we show that catalase (HRP) keeps its activity if immobilized in Langmuir-Blodgett (LB) films of dipalmitoyl phosphatidylglycerol (DPPG). The incorporation of catalase into a DPPG monolayer at the at interface was demonstrated with surface pressure and surface potential isotherms, in addition to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). According to the PM-IRRAS data. catalase was not denatured upon adsorption on a preformed DPPG monolayer and could be transferred onto a solid substrate. The catalytic activity of catalase in a mixed LB film with DPPG was ca. 13% higher than in solution. The control of molecular architecture and choice of a suitable phospholipid matrix allows catalase-containing LB films to be used in sensing hydrogen peroxide.
Resumo:
The control of molecular architectures may be essential to optimize materials properties for producing luminescent devices from polymers, especially in the blue region of the spectrum. In this Article, we report on the fabrication of Langmuir-Blodgett (LB) films of polyfluorene copolymers mixed with the phospholipid dimyristoyl phosphatidic acid (DMPA). The copolymers poly(9.9-dioetylfluorene)-co-phenylene (copolymer I) and poly(9,9-dioctylfluorene)-co-quaterphenylene) (copolymer 2) were synthesized via Suzuki reaction. Copolymer I could not form a monolayer on its own, but it yielded stable films when mixed with DMPA. In contrast, Langmuir monolayers could be formed from either the neat copolymer 2 or when mixed with DMPA. The surface pressure and surface potential measurements, in addition to Brewster angle microscopy, indicated that DMPA provided a suitable matrix for copolymer I to form a stable Langmuir film, amenable to transfer as LB films, while enhancing the ability of copolymer 2 to form LB films with enhanced emission, as indicated by fluorescence spectroscopy. Because a high emission was obtained with the mixed LB films and since the molecular-level interactions between the film components can be tuned by changing the experimental conditions to allow For further optimization, one may envisage applications of these films in optical devices such as organic light-emitting diodes (OLEDs).
Resumo:
This study aimed to evaluate the potential of soybean-promoted acidic nitrite reduction and to correlate this activity with the content of phenolics and with the bactericidal activity against Escherichia coli O157:H7. Extracts of embrionary axes and cotyledons enriched in phenolics increased (center dot)NO formation at acidic pH at values that were 7.1 and 4.5 times higher, respectively, when compared to the reduction of the nonenriched extracts. Among the various phenolics accumulated in the soybean extracts, five stimulated nitrite reduction in the following decreasing order of potency: epicatechin gallate, chlorogenic acid, caffeic acid, galic acid and p-coumaric acid. Extracts of embrionary axes presented higher contents of epicatechin gallate and caffeic acid, compared to that of cotyledons, indicating a positive correlation between activity of the extracts and content of phenolics with regard to nitrite reducing activity. Soybean extracts enriched in phenolics interacted synergistically with acidified nitrite to prevent E. coli O157:H7 growth. The results suggest that soybean phenolics may interfere with the metabolism of (center dot)NO in an acidic environment by accelerating the reduction of nitrite, with a potential antimicrobial effect in the stomach.
Resumo:
Structures of digestive lysozymes 1 and 2 from housefly (MdL1 and MdL2) show that S106-T107 delimit a polar pocket around E32 (catalytic acid/base) and N46 contributes to the positioning of 050 (catalytic nucleophile), whereas those residues are replaced by V109-A110 and D48 in the non-digestive lysozyme from hen egg-white (HEWL). Further analyses revealed that MdL1 and MdL2 surfaces are less positively charged than HEWL surface. To verify the relevance of these differences to the acidic pH optimum of digestive lysozymes it was determined that pKas of the catalytic residues of the triple mutant MdL2 (N46D-S106V-T107A) are similar to HEWL pKas and higher than those for MdL2. In agreement, triple mutant MdL2 and HEWL exhibits the same pH optimum upon methylumbelliferylchitotrioside. In addition to that, the introduction of six basic residues on MdL1 surface increased by 1 unit the pH optimum for the activity upon bacterial walls. Thus, the acidic pH optimum for MdL2 and MdL1 activities upon methylumbelliferylchitotrioside is determined by the presence of N46, S106 and T107 in the environment of their catalytic residues, which favors pKas reduction. Conversely, acidic pH optimum upon bacterial walls is determined by a low concentration of positive charges on the MdL2 and MdL1 surfaces. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The ozonolysis of 2,4-xylidine (2,4-dimethyl-aniline) in acidic aqueous solution was investigated by determining the major reaction products and their evolution as a function of the reaction time and their dependence on the pH of the reaction system. 2,4-Dimethyl-nitrobenzene and 2,4-dimethyl-phenol were found to be primary reaction products; their formation might be explained by electron transfer and substitution reactions. 2,4-Dimethyl-phenol was further oxidized yielding 2,4-dimethyl- and/or 4,6-dimethyl-resorcinol by electrophilic addition of HO(center dot) radicals. The best fitting phenomenological kinetic model and the good convergence of calculated and experimentally determined rate constants imply two additional competitive pathways of substrate oxidation: (i) electrophilic addition of HO(center dot) radicals and fast subsequent substitution would also yield the resorcinol derivatives. (ii) Substrate and isolated products are thought to be oxidized by hydrogen abstraction at the benzylic sites, but the corresponding products (alcohols, aldehydes, and carboxylic acids) could not be identified. Fe(II) was added to probe for the presence of H(2)O(2), but had no or only a minor effect on the kinetics of the ozonolysis. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The electro-oxidation of methanol at supported tungsten carbide (WC) nanoparticles in sulfuric acid solution was studied using cyclic voltammetry, potentiostatic measurements, and differential electrochemical mass spectroscopy (DEMS). The catalyst was prepared by a sonochemical method and characterized by X-ray diffraction. Over the WC catalyst, the oxidation of methanol (1 M in a sulfuric acid electrolyte) begins at a potential below 0.5 V/RHE during the anodic sweep. During potentiostatic measurements, a maximum current of 0.8 mA mg(-1) was obtained at 0.4 V. Measurements of DEMS showed that the methanol oxidation reaction over tungsten carbide produces CO2 (m/z=44); no methylformate (m/z=60) was detected. These results are discussed in the context of the continued search for alternative materials for the anode catalyst of direct methanol fuel cells.
Resumo:
The extracellular hemoglobin from Glossoscolex paulistus (HbGp) has a molecular mass of 3.6 M Da, It has a high oligomeric stability at pH 7.0 and low autoxidation rates, as compared to vertebrate hemoglobins. In this work, fluorescence and light scattering experiments were performed with the three oxidation forms of HbGp exposed to acidic pH. Our focus is on the HbGp stability at acidic pH and also on the determination of the isoelectric point (pI) of the protein. Our results show that the protein in the cyanomet form is more stable than in the other two forms, in the whole range. Our zeta-potential data are consistent with light scattering results. Average values apt obtained by different techniques were 5.6 +/- 0.5, 5.4 +/- 0.2 and 5.2 +/- 0.5 for the oxy, met, and cyanomet forms. Dynamic light scattering (DLS) experiments have shown that, at pH 6.0, the aggregation (oligomeric) state of oxy-, met- and cyanomet-HbGp remains the same as that at 7.0. The interaction between the oxy-HbGp and ionic surfactants at pH 5.0 and 6.0 was also monitored in the present study. At pH 5,0, below the protein pI, the effects of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium chloride (CTAC) are inverted when compared to pH 7.0. For CTAC, in acid pH 5.0, no precipitation is observed, while for SDS an intense light scattering appears due to a precipitation process. HbGp interacts strongly with the cationic surfactant at pH 7.0 and with the anionic one at pH 5.0. This effect is due to the predominance, in the protein surface, of residues presenting opposite charges to the surfactant headgroups. This information can be relevant for the development of extracellular hemoglobin-based artificial blood substitutes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sonicated mixtures of dimethyldioctadecylammonium chloride (DODAC), egg phosphatidylcholine (PC), dimyristoyl phosphatidylcholine (DMPC), and dipalmitoyl phosphatidylcholine (DPPC) were used to analyze vesicle effects on the rate of decarboxylation of 6-nitrobenzisoxazol-3-carboxylic acid (Nboc). Electron microscopic images of the vesicles were obtained with trehalose, a know cryoprotector. Phase diagrams and phase transitions temperatures of the vesicle bilayers were determined. Nboc decarboxylation rates increased in the presence of vesicles prepared with both phospholipids and DODAC/phospholipid mixtures. Quantitative analysis of vesicular effects was done using pseudophase models. Phospholipids catalyzed up to 140-fold while the maximum catalysis by DODAC/lipid vesicles reached 800-fold. Acceleration depends on alkyl chain length, fatty acid insaturation of the lipids, and the DODAC/phospholipid molar ratio. Catalysis is not related to the liquid crystalline-gel state of the bilayer and may be related to the relative position of Nboc with respect to the interface.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An acidic phospholipase A(2) (PLA(2)) isolated from Bothrops jararacussu snake venom was crystallized with two inhibitors: alpha-tocopherol (vitamin E) and p-bromophenacyl bromide (BPB). The crystals diffracted at 1.45- and 1.85-Angstrom resolution, respectively, for the complexes with alpha-tocopherol and p-bromophenacyl bromide. The crystals are not isomorphous with those of the native protein, suggesting the inhibitors binding was successful and changes in the quaternary structure may have occurred. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
An acidic (pI similar to 4.5) phospholipase A(2) (BthA-I-PLA(2)) was isolated from Bothrops jararacussu snake venom by ion-exchange chromatography on a CM-Sepharose column followed by reverse phase chromatography on an RP-HPLC C-18 column. It is an similar to13.7 kDa single chain Asp49 PLA(2) with approximately 122 amino acid residues, 7 disulfide bridges, and the following N-terminal sequence: 'SLWQFGKMINYVMJGESGVLQYLSYGCYCGLGGQGQPTDATDRCCFVHDCC(51). Crystals of this acidic protein diffracted beyond 2.0 Angstrom resolution. These crystals are monoclinic and have unit cell dimensions of a = 33.9, b = 63.8, c = 49.1 Angstrom, and beta = 104.0degrees. Although not myotoxic, cytotoxic, or lethal, the protein was catalytically 3-4 tithes more active than BthTX-II, a basic D49 myotoxic PLA(2) from the same venom and other Bothrops venoms. Although it showed no toxic activity, it was able to induce time-independent edema, this activity being inhibited by EDTA. In addition, BthA-I-PLA(2) caused a hypotensive response in the rat and inhibited platelet aggregation, Catalytic, antiplatelet and other activities were abolished by chemical modification with 4-bromophenacyl bromide, which is known to covalently bind to His48 of the catalytic site. Antibodies raised against crude B. jararacussu venom recognized this acidic PLA(2), while anti-Asp49-BthTX-II recognized it weakly and anti-Lys49-BthTX-I showed the least cross-reaction. These data confirm that myotoxicity does not necessarily correlate with catalytic activity in native PLA(2) homologues and that either of these two activities may exist alone. BthA-I-PLA(2), in addition to representing a relevant molecular model of catalytic activity, is also a promising hypotensive agent and platelet aggregation inhibitor for further studies. (C) 2002 Elsevier B.V. All rights reserved.